SQL QUICK REFERENCE SHEET
CharterUP Data Analyst Interview Prep

1. BASIC QUERIES
SELECT Statement
SELECT column1, column2 FROM table_name;
SELECT * FROM table_name; -- all columns
SELECT DISTINCT city FROM bookings; -- unique values
WHERE Clause (Filtering)
SELECT * FROM bookings WHERE revenue > 1000;
SELECT * FROM bookings WHERE city = 'Atlanta';
SELECT * FROM bookings WHERE booking_date >= '2024-01-01';

-- Multiple conditions
SELECT * FROM bookings WHERE revenue > 1000 AND city = 'Atlanta';
SELECT * FROM bookings WHERE city = 'Atlanta' OR city = 'Austin';
SELECT * FROM bookings WHERE city IN ('Atlanta', 'Austin', 'Dallas');
SELECT * FROM bookings WHERE revenue BETWEEN 500 AND 1000;
SELECT * FROM bookings WHERE customer_name LIKE 'John%'; -- starts with John
SELECT * FROM bookings WHERE email LIKE '%@gmail.com'; -- ends with @gmail.com
ORDER BY (Sorting)
SELECT * FROM bookings ORDER BY revenue DESC; -- highest first
SELECT * FROM bookings ORDER BY booking_date ASC; -- oldest first
SELECT * FROM bookings ORDER BY city, revenue DESC; -- multi-column sort
LIMIT
SELECT * FROM bookings ORDER BY revenue DESC LIMIT 10; -- top 10

2. AGGREGATION
Aggregate Functions
SELECT COUNT(*) FROM bookings; -- count rows
SELECT COUNT(DISTINCT customer_id) FROM bookings; -- unique customers
SELECT SUM(revenue) FROM bookings;
SELECT AVG(revenue) FROM bookings;
SELECT MIN(revenue), MAX(revenue) FROM bookings;
GROUP BY
-- Total revenue by city
SELECT city, SUM(revenue) AS total_revenue
FROM bookings
GROUP BY city;

-- Count bookings per customer
SELECT customer_id, COUNT(*) AS booking_count
FROM bookings
GROUP BY customer_id;

-- Average revenue by month
SELECT
 DATE_TRUNC('month', booking_date) AS month,
 AVG(revenue) AS avg_revenue
FROM bookings
GROUP BY DATE_TRUNC('month', booking_date);
HAVING (Filter after aggregation)
-- Cities with total revenue > 10000
SELECT city, SUM(revenue) AS total_revenue
FROM bookings
GROUP BY city
HAVING SUM(revenue) > 10000;

-- Customers with more than 5 bookings
SELECT customer_id, COUNT(*) AS booking_count
FROM bookings
GROUP BY customer_id
HAVING COUNT(*) > 5;

3. JOINS
INNER JOIN (only matching rows)
SELECT b.booking_id, c.customer_name, b.revenue
FROM bookings b
INNER JOIN customers c ON b.customer_id = c.customer_id;
LEFT JOIN (all left table + matching right)
-- All customers, even without bookings
SELECT c.customer_name, b.booking_id
FROM customers c
LEFT JOIN bookings b ON c.customer_id = b.customer_id;
RIGHT JOIN (all right table + matching left)
SELECT c.customer_name, b.booking_id
FROM bookings b
RIGHT JOIN customers c ON b.customer_id = c.customer_id;
FULL OUTER JOIN (all from both)
SELECT c.customer_name, b.booking_id
FROM customers c
FULL OUTER JOIN bookings b ON c.customer_id = b.customer_id;
Multiple JOINs
SELECT
 b.booking_id,
 c.customer_name,
 o.operator_name,
 b.revenue
FROM bookings b
JOIN customers c ON b.customer_id = c.customer_id
JOIN operators o ON b.operator_id = o.operator_id;

4. SUBQUERIES
In WHERE clause
-- Customers with above-average revenue
SELECT customer_id, revenue
FROM bookings
WHERE revenue > (SELECT AVG(revenue) FROM bookings);

-- Customers who booked in January
SELECT customer_name
FROM customers
WHERE customer_id IN (
 SELECT customer_id
 FROM bookings
 WHERE EXTRACT(MONTH FROM booking_date) = 1
);
In FROM clause (derived table)
-- Average of customer totals
SELECT AVG(customer_total) AS avg_customer_spend
FROM (
 SELECT customer_id, SUM(revenue) AS customer_total
 FROM bookings
 GROUP BY customer_id
) AS customer_totals;
EXISTS
-- Customers who have at least one booking
SELECT c.customer_name
FROM customers c
WHERE EXISTS (
 SELECT 1 FROM bookings b
 WHERE b.customer_id = c.customer_id
);

5. WINDOW FUNCTIONS
ROW_NUMBER (unique rank)
SELECT
 customer_id,
 booking_date,
 revenue,
 ROW_NUMBER() OVER (ORDER BY revenue DESC) AS row_num
FROM bookings;
RANK & DENSE_RANK
-- RANK: skips numbers for ties (1, 2, 2, 4)
-- DENSE_RANK: doesn't skip (1, 2, 2, 3)
SELECT
 operator_id,
 revenue,
 RANK() OVER (ORDER BY revenue DESC) AS revenue_rank,
 DENSE_RANK() OVER (ORDER BY revenue DESC) AS dense_rank
FROM operators;
PARTITION BY (group within window)
-- Rank operators within each city
SELECT
 city,
 operator_id,
 revenue,
 RANK() OVER (PARTITION BY city ORDER BY revenue DESC) AS city_rank
FROM operators;
LAG & LEAD (previous/next row)
-- Compare to previous month's revenue
SELECT
 month,
 revenue,
 LAG(revenue, 1) OVER (ORDER BY month) AS prev_month_revenue,
 revenue - LAG(revenue, 1) OVER (ORDER BY month) AS month_over_month
FROM monthly_revenue;
Running Totals
SELECT
 booking_date,
 revenue,
 SUM(revenue) OVER (ORDER BY booking_date) AS running_total
FROM bookings;

6. COMMON TABLE EXPRESSIONS (CTEs)
-- More readable than subqueries
WITH customer_totals AS (
 SELECT customer_id, SUM(revenue) AS total_revenue
 FROM bookings
 GROUP BY customer_id
),
high_value_customers AS (
 SELECT customer_id, total_revenue
 FROM customer_totals
 WHERE total_revenue > 5000
)
SELECT c.customer_name, h.total_revenue
FROM high_value_customers h
JOIN customers c ON h.customer_id = c.customer_id;

7. CASE STATEMENTS
-- Categorize bookings
SELECT
 booking_id,
 revenue,
 CASE
 WHEN revenue < 500 THEN 'Small'
 WHEN revenue BETWEEN 500 AND 2000 THEN 'Medium'
 ELSE 'Large'
 END AS booking_size
FROM bookings;

-- Conditional aggregation
SELECT
 COUNT(CASE WHEN status = 'completed' THEN 1 END) AS completed,
 COUNT(CASE WHEN status = 'cancelled' THEN 1 END) AS cancelled,
 COUNT(*) AS total
FROM bookings;

8. DATE FUNCTIONS
-- Extract parts
SELECT EXTRACT(YEAR FROM booking_date) AS year FROM bookings;
SELECT EXTRACT(MONTH FROM booking_date) AS month FROM bookings;
SELECT EXTRACT(DOW FROM booking_date) AS day_of_week FROM bookings; -- 0=Sunday

-- Truncate to period
SELECT DATE_TRUNC('month', booking_date) AS month FROM bookings;
SELECT DATE_TRUNC('week', booking_date) AS week FROM bookings;

-- Date arithmetic
SELECT booking_date + INTERVAL '7 days' FROM bookings;
SELECT CURRENT_DATE - INTERVAL '30 days';
SELECT AGE(CURRENT_DATE, booking_date) AS days_since_booking FROM bookings;

-- Filter by date
SELECT * FROM bookings WHERE booking_date >= CURRENT_DATE - INTERVAL '30 days';
SELECT * FROM bookings WHERE EXTRACT(YEAR FROM booking_date) = 2024;

9. NULL HANDLING
-- Check for NULL
SELECT * FROM customers WHERE phone IS NULL;
SELECT * FROM customers WHERE phone IS NOT NULL;

-- Replace NULL
SELECT COALESCE(phone, 'No phone') FROM customers;
SELECT COALESCE(discount, 0) AS discount FROM bookings;

-- NULL-safe comparison
SELECT * FROM bookings WHERE COALESCE(discount, 0) > 0;

10. STRING FUNCTIONS
SELECT UPPER(customer_name) FROM customers;
SELECT LOWER(email) FROM customers;
SELECT LENGTH(customer_name) FROM customers;
SELECT CONCAT(first_name, ' ', last_name) AS full_name FROM customers;
SELECT SUBSTRING(phone, 1, 3) AS area_code FROM customers;
SELECT TRIM(customer_name) FROM customers; -- remove whitespace
SELECT REPLACE(phone, '-', '') FROM customers; -- remove dashes

SQL PRACTICE PROBLEMS
Basic (Day 1)
Problem 1: Select all bookings from Atlanta with revenue > $500
SELECT * FROM bookings
WHERE city = 'Atlanta' AND revenue > 500;
Problem 2: Count total bookings per city, sorted by count descending
SELECT city, COUNT(*) AS booking_count
FROM bookings
GROUP BY city
ORDER BY booking_count DESC;
Problem 3: Find the top 5 highest revenue bookings
SELECT * FROM bookings
ORDER BY revenue DESC
LIMIT 5;
Problem 4: Calculate average revenue per customer
SELECT customer_id, AVG(revenue) AS avg_revenue
FROM bookings
GROUP BY customer_id;
Problem 5: Find bookings from the last 30 days
SELECT * FROM bookings
WHERE booking_date >= CURRENT_DATE - INTERVAL '30 days';

Intermediate (Day 2-3)
Problem 6: Find customers who have never made a booking
SELECT c.customer_id, c.customer_name
FROM customers c
LEFT JOIN bookings b ON c.customer_id = b.customer_id
WHERE b.booking_id IS NULL;
Problem 7: Calculate month-over-month revenue growth
WITH monthly AS (
 SELECT
 DATE_TRUNC('month', booking_date) AS month,
 SUM(revenue) AS revenue
 FROM bookings
 GROUP BY DATE_TRUNC('month', booking_date)
)
SELECT
 month,
 revenue,
 LAG(revenue) OVER (ORDER BY month) AS prev_month,
 revenue - LAG(revenue) OVER (ORDER BY month) AS growth
FROM monthly;
Problem 8: Rank operators by total revenue within each city
SELECT
 city,
 operator_id,
 SUM(revenue) AS total_revenue,
 RANK() OVER (PARTITION BY city ORDER BY SUM(revenue) DESC) AS city_rank
FROM bookings
GROUP BY city, operator_id;
Problem 9: Find the second highest revenue booking per customer
WITH ranked AS (
 SELECT
 customer_id,
 booking_id,
 revenue,
 ROW_NUMBER() OVER (PARTITION BY customer_id ORDER BY revenue DESC) AS rn
 FROM bookings
)
SELECT customer_id, booking_id, revenue
FROM ranked
WHERE rn = 2;
Problem 10: Calculate running total of revenue by date
SELECT
 booking_date,
 revenue,
 SUM(revenue) OVER (ORDER BY booking_date) AS running_total
FROM bookings
ORDER BY booking_date;

Advanced (Day 4-5)
Problem 11: Find customers whose total spend is above the average customer spend
WITH customer_totals AS (
 SELECT customer_id, SUM(revenue) AS total_spend
 FROM bookings
 GROUP BY customer_id
)
SELECT customer_id, total_spend
FROM customer_totals
WHERE total_spend > (SELECT AVG(total_spend) FROM customer_totals);
Problem 12: Calculate the percentage of total revenue each city contributes
SELECT
 city,
 SUM(revenue) AS city_revenue,
 ROUND(100.0 * SUM(revenue) / (SELECT SUM(revenue) FROM bookings), 2) AS pct_of_total
FROM bookings
GROUP BY city
ORDER BY pct_of_total DESC;
Problem 13: Find consecutive months with revenue decline
WITH monthly AS (
 SELECT
 DATE_TRUNC('month', booking_date) AS month,
 SUM(revenue) AS revenue
 FROM bookings
 GROUP BY DATE_TRUNC('month', booking_date)
),
with_prev AS (
 SELECT
 month,
 revenue,
 LAG(revenue) OVER (ORDER BY month) AS prev_revenue
 FROM monthly
)
SELECT month, revenue, prev_revenue
FROM with_prev
WHERE revenue < prev_revenue;
Problem 14: Pivot: Show booking count by city and status
SELECT
 city,
 COUNT(CASE WHEN status = 'completed' THEN 1 END) AS completed,
 COUNT(CASE WHEN status = 'pending' THEN 1 END) AS pending,
 COUNT(CASE WHEN status = 'cancelled' THEN 1 END) AS cancelled
FROM bookings
GROUP BY city;
Problem 15: Find the most popular booking day of week per city
WITH day_counts AS (
 SELECT
 city,
 EXTRACT(DOW FROM booking_date) AS day_of_week,
 COUNT(*) AS booking_count,
 ROW_NUMBER() OVER (PARTITION BY city ORDER BY COUNT(*) DESC) AS rn
 FROM bookings
 GROUP BY city, EXTRACT(DOW FROM booking_date)
)
SELECT city, day_of_week, booking_count
FROM day_counts
WHERE rn = 1;

CharterUP-Themed Problems
Problem 16: Find operators with the highest average rating who have completed at least 50 trips
SELECT operator_id, AVG(rating) AS avg_rating, COUNT(*) AS trip_count
FROM trips
WHERE status = 'completed'
GROUP BY operator_id
HAVING COUNT(*) >= 50
ORDER BY avg_rating DESC
LIMIT 10;
Problem 17: Calculate the average time between booking and trip date
SELECT
 AVG(trip_date - booking_date) AS avg_lead_time_days
FROM bookings;
Problem 18: Find repeat customers (more than 1 booking) and their lifetime value
SELECT
 customer_id,
 COUNT(*) AS booking_count,
 SUM(revenue) AS lifetime_value
FROM bookings
GROUP BY customer_id
HAVING COUNT(*) > 1
ORDER BY lifetime_value DESC;
Problem 19: Calculate operator utilization rate (completed trips / total trips)
SELECT
 operator_id,
 COUNT(*) AS total_trips,
 COUNT(CASE WHEN status = 'completed' THEN 1 END) AS completed,
 ROUND(100.0 * COUNT(CASE WHEN status = 'completed' THEN 1 END) / COUNT(*), 2) AS completion_rate
FROM trips
GROUP BY operator_id;
Problem 20: Find the busiest booking hours
SELECT
 EXTRACT(HOUR FROM booking_timestamp) AS hour,
 COUNT(*) AS booking_count
FROM bookings
GROUP BY EXTRACT(HOUR FROM booking_timestamp)
ORDER BY booking_count DESC;

KEY TIPS FOR INTERVIEWS
1. Always clarify the question - Ask about edge cases, NULL handling, expected output format
1. Start simple - Write basic query first, then add complexity
1. Use aliases - Makes queries readable: FROM bookings b
1. Think about NULLs - JOINs may produce NULLs, aggregations ignore NULLs
1. Know the order of operations:
· FROM → WHERE → GROUP BY → HAVING → SELECT → ORDER BY → LIMIT
1. Window functions vs GROUP BY:
· GROUP BY: reduces rows (one row per group)
· Window functions: keeps all rows, adds calculated column
1. Common mistakes to avoid:
· Forgetting GROUP BY with aggregates
· Using WHERE instead of HAVING for aggregate filters
· Wrong JOIN type (LEFT vs INNER)
· Not handling NULLs
