PYTHON QUICK REFERENCE SHEET
CharterUP Data Analyst Interview Prep

PART 1: PYTHON BASICS
1. Variables & Data Types
Numbers
x = 10 # int
y = 3.14 # float
z = x + y # 13.14

Strings
name = "CharterUP"
greeting = f"Welcome to {name}" # f-string formatting

Boolean
is_active = True
is_cancelled = False

Check type
type(x) # <class 'int'>
2. Lists (ordered, mutable)
Create
cities = ["Atlanta", "Austin", "Dallas"]

Access
cities[0] # "Atlanta"
cities[-1] # "Dallas" (last item)
cities[0:2] # ["Atlanta", "Austin"] (slice)

Modify
cities.append("Houston") # add to end
cities.insert(0, "Miami") # insert at index
cities.remove("Dallas") # remove by value
cities.pop() # remove last item

Useful operations
len(cities) # count items
"Atlanta" in cities # True (membership check)
sorted(cities) # sorted copy
cities.sort() # sort in place
3. Dictionaries (key-value pairs)
Create
booking = {
 "id": 123,
 "city": "Atlanta",
 "revenue": 1500.00
}

Access
booking["city"] # "Atlanta"
booking.get("status", None) # None if key missing

Modify
booking["status"] = "completed" # add/update
del booking["revenue"] # delete key

Iterate
for key, value in booking.items():
 print(f"{key}: {value}")

Get all keys/values
booking.keys() # dict_keys(['id', 'city', 'status'])
booking.values() # dict_values([123, 'Atlanta', 'completed'])
4. Loops
For loop
for city in cities:
 print(city)

For loop with index
for i, city in enumerate(cities):
 print(f"{i}: {city}")

Range
for i in range(5): # 0, 1, 2, 3, 4
 print(i)

for i in range(1, 6): # 1, 2, 3, 4, 5
 print(i)

While loop
count = 0
while count < 5:
 print(count)
 count += 1

List comprehension (concise loop)
squares = [x**2 for x in range(5)] # [0, 1, 4, 9, 16]
evens = [x for x in range(10) if x % 2 == 0] # [0, 2, 4, 6, 8]
5. Conditionals
revenue = 1500

if revenue > 2000:
 size = "Large"
elif revenue > 500:
 size = "Medium"
else:
 size = "Small"

Ternary (one-liner)
size = "Large" if revenue > 2000 else "Small"
6. Functions
def calculate_commission(revenue, rate=0.1):
 """Calculate commission from revenue."""
 return revenue * rate

Call
commission = calculate_commission(1500) # 150.0
commission = calculate_commission(1500, 0.15) # 225.0

Lambda (anonymous function)
square = lambda x: x ** 2
square(5) # 25
7. Error Handling
try:
 result = 10 / 0
except ZeroDivisionError:
 result = 0
 print("Cannot divide by zero")
finally:
 print("Done")

PART 2: NUMPY BASICS
import numpy as np

Create arrays
arr = np.array([1, 2, 3, 4, 5])
zeros = np.zeros(5) # [0, 0, 0, 0, 0]
ones = np.ones((3, 3)) # 3x3 matrix of 1s
range_arr = np.arange(0, 10, 2) # [0, 2, 4, 6, 8]

Basic operations (element-wise)
arr * 2 # [2, 4, 6, 8, 10]
arr + 10 # [11, 12, 13, 14, 15]
arr ** 2 # [1, 4, 9, 16, 25]

Aggregations
arr.sum() # 15
arr.mean() # 3.0
arr.std() # standard deviation
arr.min() # 1
arr.max() # 5

Indexing & slicing
arr[0] # 1
arr[1:4] # [2, 3, 4]
arr[arr > 2] # [3, 4, 5] (boolean indexing)

PART 3: PANDAS
1. Creating DataFrames
import pandas as pd

From dictionary
data = {
 "city": ["Atlanta", "Austin", "Dallas"],
 "revenue": [1500, 2000, 1200],
 "bookings": [10, 15, 8]
}
df = pd.DataFrame(data)

From CSV
df = pd.read_csv("bookings.csv")

From Excel
df = pd.read_excel("bookings.xlsx")
2. Exploring Data
df.head() # first 5 rows
df.head(10) # first 10 rows
df.tail() # last 5 rows
df.shape # (rows, columns)
df.columns # column names
df.dtypes # data types
df.info() # summary of DataFrame
df.describe() # statistics for numeric columns
df.sample(5) # random 5 rows
3. Selecting Data
Select column
df["city"] # Series
df[["city", "revenue"]] # DataFrame with multiple columns

Select rows by index
df.iloc[0] # first row
df.iloc[0:5] # first 5 rows
df.iloc[0, 2] # row 0, column 2

Select rows by label
df.loc[0] # row with index 0
df.loc[0:5, "city"] # rows 0-5, city column
4. Filtering Data
Single condition
df[df["revenue"] > 1000]

Multiple conditions (use & for AND, | for OR)
df[(df["revenue"] > 1000) & (df["city"] == "Atlanta")]
df[(df["city"] == "Atlanta") | (df["city"] == "Austin")]

Using isin
df[df["city"].isin(["Atlanta", "Austin"])]

Using query (cleaner syntax)
df.query("revenue > 1000 and city == 'Atlanta'")

Filter for nulls
df[df["revenue"].isnull()]
df[df["revenue"].notnull()]
5. Handling Missing Values
Check for nulls
df.isnull().sum() # count nulls per column
df.isnull().sum().sum() # total nulls

Drop rows with nulls
df.dropna() # drop any row with null
df.dropna(subset=["revenue"]) # only check specific column

Fill nulls
df["revenue"].fillna(0) # fill with 0
df["revenue"].fillna(df["revenue"].mean()) # fill with mean
df["revenue"].fillna(df["revenue"].median()) # fill with median
df["city"].fillna("Unknown") # fill with string

Forward/backward fill
df["revenue"].fillna(method="ffill") # forward fill
df["revenue"].fillna(method="bfill") # backward fill
6. Removing Duplicates
Check for duplicates
df.duplicated().sum() # count duplicate rows

Drop duplicates
df.drop_duplicates() # all columns
df.drop_duplicates(subset=["customer_id"]) # specific columns
df.drop_duplicates(keep="first") # keep first occurrence
df.drop_duplicates(keep="last") # keep last occurrence
7. Data Types
Check types
df.dtypes

Convert types
df["revenue"] = df["revenue"].astype(float)
df["booking_id"] = df["booking_id"].astype(str)

Convert to datetime
df["date"] = pd.to_datetime(df["date"])
df["date"] = pd.to_datetime(df["date"], format="%Y-%m-%d")
8. Creating New Columns
Simple calculation
df["revenue_per_booking"] = df["revenue"] / df["bookings"]

Conditional column
df["size"] = df["revenue"].apply(lambda x: "Large" if x > 2000 else "Small")

Using np.where (like CASE WHEN)
import numpy as np
df["size"] = np.where(df["revenue"] > 2000, "Large", "Small")

Multiple conditions with np.select
conditions = [
 df["revenue"] < 500,
 df["revenue"] < 2000,
 df["revenue"] >= 2000
]
choices = ["Small", "Medium", "Large"]
df["size"] = np.select(conditions, choices, default="Unknown")

Extract from datetime
df["year"] = df["date"].dt.year
df["month"] = df["date"].dt.month
df["day_of_week"] = df["date"].dt.dayofweek # 0=Monday
df["day_name"] = df["date"].dt.day_name()
9. Grouping & Aggregation
Single aggregation
df.groupby("city")["revenue"].sum()
df.groupby("city")["revenue"].mean()
df.groupby("city")["revenue"].count()

Multiple aggregations
df.groupby("city")["revenue"].agg(["sum", "mean", "count"])

Multiple columns
df.groupby("city").agg({
 "revenue": "sum",
 "bookings": "count"
})

Named aggregations (cleaner)
df.groupby("city").agg(
 total_revenue=("revenue", "sum"),
 avg_revenue=("revenue", "mean"),
 booking_count=("bookings", "count")
)

Multiple grouping columns
df.groupby(["city", "year"])["revenue"].sum()

Reset index after groupby
df.groupby("city")["revenue"].sum().reset_index()
10. Sorting
df.sort_values("revenue") # ascending
df.sort_values("revenue", ascending=False) # descending
df.sort_values(["city", "revenue"], ascending=[True, False])
11. Merging DataFrames
Left join (keep all left rows)
merged = pd.merge(bookings, customers, on="customer_id", how="left")

Inner join (only matching rows)
merged = pd.merge(bookings, customers, on="customer_id", how="inner")

Right join
merged = pd.merge(bookings, customers, on="customer_id", how="right")

Outer join (all rows from both)
merged = pd.merge(bookings, customers, on="customer_id", how="outer")

Different column names
merged = pd.merge(bookings, customers,
 left_on="cust_id", right_on="customer_id",
 how="left")

Concatenate (stack vertically)
combined = pd.concat([df1, df2])
combined = pd.concat([df1, df2], ignore_index=True)
12. Pivot Tables
Simple pivot
pivot = df.pivot_table(
 values="revenue",
 index="city",
 columns="year",
 aggfunc="sum"
)

Multiple aggregations
pivot = df.pivot_table(
 values="revenue",
 index="city",
 aggfunc=["sum", "mean", "count"]
)

Fill missing with 0
pivot = df.pivot_table(
 values="revenue",
 index="city",
 columns="year",
 aggfunc="sum",
 fill_value=0
)
13. String Operations
df["city_upper"] = df["city"].str.upper()
df["city_lower"] = df["city"].str.lower()
df["city_len"] = df["city"].str.len()
df["has_a"] = df["city"].str.contains("a", case=False)
df["first_3"] = df["city"].str[:3]
df["city_clean"] = df["city"].str.strip()
df["city_replace"] = df["city"].str.replace("Atlanta", "ATL")
14. Saving Data
df.to_csv("output.csv", index=False)
df.to_excel("output.xlsx", index=False)

PART 4: DATA VISUALIZATION
1. Matplotlib Basics
import matplotlib.pyplot as plt

Line plot
plt.figure(figsize=(10, 6))
plt.plot(df["date"], df["revenue"])
plt.xlabel("Date")
plt.ylabel("Revenue")
plt.title("Revenue Over Time")
plt.show()

Bar chart
plt.figure(figsize=(10, 6))
plt.bar(df["city"], df["revenue"])
plt.xlabel("City")
plt.ylabel("Revenue")
plt.title("Revenue by City")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

Histogram
plt.figure(figsize=(10, 6))
plt.hist(df["revenue"], bins=20, edgecolor="black")
plt.xlabel("Revenue")
plt.ylabel("Frequency")
plt.title("Revenue Distribution")
plt.show()

Scatter plot
plt.figure(figsize=(10, 6))
plt.scatter(df["bookings"], df["revenue"])
plt.xlabel("Bookings")
plt.ylabel("Revenue")
plt.title("Bookings vs Revenue")
plt.show()

Multiple subplots
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
axes[0].bar(df["city"], df["revenue"])
axes[0].set_title("Revenue by City")
axes[1].hist(df["revenue"], bins=20)
axes[1].set_title("Revenue Distribution")
plt.tight_layout()
plt.show()

Save figure
plt.savefig("chart.png", dpi=300, bbox_inches="tight")
2. Seaborn (Statistical Visualizations)
import seaborn as sns

Set style
sns.set_style("whitegrid")

Bar plot with automatic aggregation
plt.figure(figsize=(10, 6))
sns.barplot(data=df, x="city", y="revenue")
plt.title("Average Revenue by City")
plt.show()

Count plot (like histogram for categories)
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x="city")
plt.title("Booking Count by City")
plt.show()

Box plot (distribution + outliers)
plt.figure(figsize=(10, 6))
sns.boxplot(data=df, x="city", y="revenue")
plt.title("Revenue Distribution by City")
plt.show()

Violin plot (distribution shape)
plt.figure(figsize=(10, 6))
sns.violinplot(data=df, x="city", y="revenue")
plt.title("Revenue Distribution by City")
plt.show()

Heatmap (correlation matrix)
plt.figure(figsize=(10, 8))
correlation = df[["revenue", "bookings", "rating"]].corr()
sns.heatmap(correlation, annot=True, cmap="coolwarm", center=0)
plt.title("Correlation Matrix")
plt.show()

Scatter plot with regression line
plt.figure(figsize=(10, 6))
sns.regplot(data=df, x="bookings", y="revenue")
plt.title("Bookings vs Revenue with Trend")
plt.show()

Pair plot (all numeric relationships)
sns.pairplot(df[["revenue", "bookings", "rating"]])
plt.show()

Grouped bar plot
plt.figure(figsize=(10, 6))
sns.barplot(data=df, x="city", y="revenue", hue="year")
plt.title("Revenue by City and Year")
plt.show()
3. Plotly (Interactive)
import plotly.express as px

Line chart
fig = px.line(df, x="date", y="revenue", title="Revenue Over Time")
fig.show()

Bar chart
fig = px.bar(df, x="city", y="revenue", title="Revenue by City")
fig.show()

Scatter plot
fig = px.scatter(df, x="bookings", y="revenue",
 color="city", size="rating",
 title="Bookings vs Revenue")
fig.show()

Histogram
fig = px.histogram(df, x="revenue", nbins=20, title="Revenue Distribution")
fig.show()

Box plot
fig = px.box(df, x="city", y="revenue", title="Revenue by City")
fig.show()

Pie chart
fig = px.pie(df, values="revenue", names="city", title="Revenue Share")
fig.show()

Heatmap
fig = px.imshow(correlation, text_auto=True, title="Correlation Matrix")
fig.show()

Save as HTML
fig.write_html("chart.html")

PART 5: COMPLETE ANALYSIS EXAMPLE
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

1. Load data
df = pd.read_csv("bookings.csv")

2. Explore
print(f"Shape: {df.shape}")
print(f"Columns: {df.columns.tolist()}")
print(df.head())
print(df.info())
print(df.describe())

3. Clean data
Check nulls
print(df.isnull().sum())

Fill or drop nulls
df["revenue"] = df["revenue"].fillna(df["revenue"].median())
df = df.dropna(subset=["customer_id"])

Remove duplicates
df = df.drop_duplicates()

Convert types
df["booking_date"] = pd.to_datetime(df["booking_date"])

4. Feature engineering
df["month"] = df["booking_date"].dt.month
df["year"] = df["booking_date"].dt.year
df["day_of_week"] = df["booking_date"].dt.day_name()
df["revenue_category"] = pd.cut(df["revenue"],
 bins=[0, 500, 2000, float("inf")],
 labels=["Small", "Medium", "Large"])

5. Analysis
Revenue by city
city_revenue = df.groupby("city")["revenue"].agg(["sum", "mean", "count"])
print(city_revenue)

Monthly trend
monthly = df.groupby(["year", "month"])["revenue"].sum().reset_index()
print(monthly)

Top customers
top_customers = df.groupby("customer_id")["revenue"].sum().nlargest(10)
print(top_customers)

6. Visualization
fig, axes = plt.subplots(2, 2, figsize=(14, 10))

Revenue by city
axes[0, 0].bar(city_revenue.index, city_revenue["sum"])
axes[0, 0].set_title("Total Revenue by City")
axes[0, 0].set_xlabel("City")
axes[0, 0].set_ylabel("Revenue")

Revenue distribution
axes[0, 1].hist(df["revenue"], bins=30, edgecolor="black")
axes[0, 1].set_title("Revenue Distribution")
axes[0, 1].set_xlabel("Revenue")
axes[0, 1].set_ylabel("Frequency")

Revenue by day of week
day_order = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]
day_revenue = df.groupby("day_of_week")["revenue"].mean().reindex(day_order)
axes[1, 0].bar(day_order, day_revenue)
axes[1, 0].set_title("Average Revenue by Day of Week")
axes[1, 0].tick_params(axis="x", rotation=45)

Monthly trend
axes[1, 1].plot(monthly["month"], monthly["revenue"])
axes[1, 1].set_title("Monthly Revenue Trend")
axes[1, 1].set_xlabel("Month")
axes[1, 1].set_ylabel("Revenue")

plt.tight_layout()
plt.savefig("analysis_dashboard.png", dpi=300)
plt.show()

7. Summary insights
print("\n=== KEY INSIGHTS ===")
print(f"Total Revenue: ${df['revenue'].sum():,.2f}")
print(f"Average Booking Value: ${df['revenue'].mean():,.2f}")
print(f"Top City: {city_revenue['sum'].idxmax()}")
print(f"Best Day: {day_revenue.idxmax()}")

PYTHON PRACTICE PROBLEMS
Basic (Day 1)
Problem 1: Load a CSV and show first 10 rows
df = pd.read_csv("data.csv")
df.head(10)
Problem 2: Filter for revenue > 1000 and city = “Atlanta”
filtered = df[(df["revenue"] > 1000) & (df["city"] == "Atlanta")]
Problem 3: Calculate mean revenue by city
df.groupby("city")["revenue"].mean()
Problem 4: Create a new column that categorizes revenue as “High” (>2000) or “Low”
df["category"] = np.where(df["revenue"] > 2000, "High", "Low")
Problem 5: Remove duplicate rows
df = df.drop_duplicates()

Intermediate (Day 2-3)
Problem 6: Fill missing revenue with median value
df["revenue"] = df["revenue"].fillna(df["revenue"].median())
Problem 7: Merge bookings with customers on customer_id (left join)
merged = pd.merge(bookings, customers, on="customer_id", how="left")
Problem 8: Create pivot table: revenue by city and year
pivot = df.pivot_table(values="revenue", index="city", columns="year", aggfunc="sum")
Problem 9: Extract month from date and calculate monthly totals
df["month"] = pd.to_datetime(df["date"]).dt.month
monthly = df.groupby("month")["revenue"].sum()
Problem 10: Create a bar chart of revenue by city
plt.figure(figsize=(10, 6))
df.groupby("city")["revenue"].sum().plot(kind="bar")
plt.title("Revenue by City")
plt.ylabel("Revenue")
plt.tight_layout()
plt.show()

Advanced (Day 4-5)
Problem 11: Find top 10 customers by total revenue
top10 = df.groupby("customer_id")["revenue"].sum().nlargest(10)
Problem 12: Calculate month-over-month growth
monthly = df.groupby(df["date"].dt.to_period("M"))["revenue"].sum()
monthly_growth = monthly.pct_change() * 100
Problem 13: Create a correlation heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(df[["revenue", "bookings", "rating"]].corr(), annot=True, cmap="coolwarm")
plt.title("Correlation Matrix")
plt.show()
Problem 14: Perform complete EDA pipeline
Check shape, dtypes, nulls
print(df.shape)
print(df.dtypes)
print(df.isnull().sum())
print(df.describe())

Clean
df = df.dropna()
df = df.drop_duplicates()

Analyze
summary = df.groupby("city").agg({
 "revenue": ["sum", "mean", "count"],
 "rating": "mean"
})
Problem 15: Create multi-panel visualization
fig, axes = plt.subplots(2, 2, figsize=(12, 10))

sns.barplot(data=df, x="city", y="revenue", ax=axes[0,0])
axes[0,0].set_title("Revenue by City")

sns.histplot(df["revenue"], bins=30, ax=axes[0,1])
axes[0,1].set_title("Revenue Distribution")

sns.boxplot(data=df, x="city", y="rating", ax=axes[1,0])
axes[1,0].set_title("Ratings by City")

sns.scatterplot(data=df, x="bookings", y="revenue", ax=axes[1,1])
axes[1,1].set_title("Bookings vs Revenue")

plt.tight_layout()
plt.show()
