STATISTICS & MACHINE LEARNING REFERENCE
CharterUP Data Analyst Interview Prep

PART 1: STATISTICS FUNDAMENTALS
1. Descriptive Statistics
Measures of Central Tendency
import numpy as np
import pandas as pd

data = [10, 20, 20, 30, 40, 50, 100]

# Mean (average)
np.mean(data)       # 38.57
df["col"].mean()

# Median (middle value) - robust to outliers
np.median(data)     # 30
df["col"].median()

# Mode (most frequent)
from scipy import stats
stats.mode(data)    # 20
df["col"].mode()
When to use what: - Mean: Normal distribution, no outliers - Median: Skewed data, outliers present (e.g., income, revenue) - Mode: Categorical data, finding most common
Measures of Spread
# Range
max(data) - min(data)  # 90

# Variance (average squared deviation from mean)
np.var(data)           # 857.14
df["col"].var()

# Standard Deviation (sqrt of variance)
np.std(data)           # 29.27
df["col"].std()

# Interquartile Range (Q3 - Q1) - robust to outliers
q1 = np.percentile(data, 25)  # 20
q3 = np.percentile(data, 75)  # 50
iqr = q3 - q1                 # 30

# Percentiles
np.percentile(data, 50)  # median
np.percentile(data, 90)  # 90th percentile
Distribution Shape
from scipy.stats import skew, kurtosis

# Skewness: asymmetry of distribution
# = 0: symmetric
# > 0: right-skewed (long tail right)
# < 0: left-skewed (long tail left)
skew(data)

# Kurtosis: tailedness
# = 0: normal
# > 0: heavy tails (more outliers)
# < 0: light tails (fewer outliers)
kurtosis(data)

2. Probability Basics
Key Concepts
· Probability: P(A) = favorable outcomes / total outcomes (0 to 1)
· Complement: P(not A) = 1 - P(A)
· Independent events: P(A and B) = P(A) × P(B)
· Dependent events: P(A and B) = P(A) × P(B|A)
· Mutually exclusive: P(A or B) = P(A) + P(B)
· Not mutually exclusive: P(A or B) = P(A) + P(B) - P(A and B)
Common Distributions
Normal (Gaussian): - Bell-shaped, symmetric - 68% within 1 std, 95% within 2 std, 99.7% within 3 std - Use: heights, test scores, measurement errors
Binomial: - Number of successes in n trials - Use: conversion rates, pass/fail outcomes
Poisson: - Number of events in fixed interval - Use: arrivals per hour, defects per unit

3. Correlation & Relationships
# Pearson correlation (linear relationship)
# Range: -1 to +1
# +1: perfect positive, -1: perfect negative, 0: no linear relationship
df["revenue"].corr(df["bookings"])

# Correlation matrix
df[["revenue", "bookings", "rating"]].corr()

# Visualize
import seaborn as sns
sns.heatmap(df.corr(), annot=True, cmap="coolwarm")
Correlation vs Causation: - Correlation does NOT imply causation - Ice cream sales and drowning are correlated (both increase in summer) - Always consider confounding variables

4. Hypothesis Testing
Concept
1. Null hypothesis (H0): No effect/difference (status quo)
1. Alternative hypothesis (H1): There IS an effect/difference
1. p-value: Probability of seeing this result if H0 is true
1. Significance level (α): Usually 0.05
1. Decision: If p < α, reject H0
Common Tests
from scipy import stats

# T-test: Compare means of two groups
# "Is revenue different between Atlanta and Austin?"
atlanta = df[df["city"] == "Atlanta"]["revenue"]
austin = df[df["city"] == "Austin"]["revenue"]
t_stat, p_value = stats.ttest_ind(atlanta, austin)
if p_value < 0.05:
    print("Significant difference")

# Chi-square test: Categorical association
# "Is booking status associated with city?"
contingency = pd.crosstab(df["city"], df["status"])
chi2, p_value, dof, expected = stats.chi2_contingency(contingency)

# A/B Testing (same as t-test)
control = df[df["group"] == "control"]["conversion"]
treatment = df[df["group"] == "treatment"]["conversion"]
t_stat, p_value = stats.ttest_ind(control, treatment)

PART 2: MACHINE LEARNING CONCEPTS
1. Types of Machine Learning
Supervised Learning (labeled data)
· Regression: Predict continuous value (price, revenue)
· Classification: Predict category (churn yes/no, fraud yes/no)
Unsupervised Learning (no labels)
· Clustering: Group similar items (customer segments)
· Dimensionality reduction: Reduce features (PCA)
Key Terms
· Features (X): Input variables
· Target (y): What we’re predicting
· Training set: Data to build model
· Test set: Data to evaluate model
· Overfitting: Model memorizes training data, fails on new data
· Underfitting: Model too simple, misses patterns

2. The ML Workflow
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

# 1. Prepare data
X = df[["bookings", "distance", "passengers"]]  # features
y = df["revenue"]  # target

# 2. Split data (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

# 3. Scale features (important for many algorithms)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)  # use same scaler!

# 4. Train model
model = LinearRegression()
model.fit(X_train_scaled, y_train)

# 5. Predict
y_pred = model.predict(X_test_scaled)

# 6. Evaluate
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
print(f"RMSE: {rmse:.2f}")
print(f"R²: {r2:.2f}")

3. Regression Models
Linear Regression
Use when: Predicting continuous value with linear relationship Example: Predict revenue from bookings, distance
from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train, y_train)

# Coefficients (feature importance)
for feature, coef in zip(X.columns, model.coef_):
    print(f"{feature}: {coef:.2f}")

# Intercept
print(f"Intercept: {model.intercept_:.2f}")
Interpretation: - Coefficient = change in y for 1 unit change in x - R² = % of variance explained (0.8 = 80%) - RMSE = average prediction error (in same units as y)
Ridge & Lasso Regression
Use when: Many features, want to prevent overfitting
from sklearn.linear_model import Ridge, Lasso

# Ridge: shrinks coefficients, keeps all features
ridge = Ridge(alpha=1.0)
ridge.fit(X_train, y_train)

# Lasso: can zero out coefficients (feature selection)
lasso = Lasso(alpha=1.0)
lasso.fit(X_train, y_train)

4. Classification Models
Logistic Regression
Use when: Binary classification (yes/no, churn/no churn)
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

# Probability predictions
y_prob = model.predict_proba(X_test)[:, 1]  # probability of class 1
Decision Tree
Use when: Need interpretable model, non-linear relationships
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier(max_depth=5, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

# Feature importance
for feature, importance in zip(X.columns, model.feature_importances_):
    print(f"{feature}: {importance:.3f}")
Random Forest
Use when: Better accuracy than single tree, handles many features
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
Gradient Boosting / XGBoost
Use when: Best performance, competitions
from sklearn.ensemble import GradientBoostingClassifier
# or: from xgboost import XGBClassifier

model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
model.fit(X_train, y_train)

5. Model Evaluation
Regression Metrics
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

# MSE: Mean Squared Error (penalizes large errors more)
mse = mean_squared_error(y_test, y_pred)

# RMSE: Root Mean Squared Error (same units as y)
rmse = np.sqrt(mse)

# MAE: Mean Absolute Error (average error)
mae = mean_absolute_error(y_test, y_pred)

# R²: Coefficient of determination (0-1, higher is better)
r2 = r2_score(y_test, y_pred)
Classification Metrics
from sklearn.metrics import (
    accuracy_score, precision_score, recall_score,
    f1_score, confusion_matrix, classification_report,
    roc_auc_score
)

# Accuracy: % correct predictions
accuracy = accuracy_score(y_test, y_pred)

# Precision: Of predicted positives, % actually positive
# High precision = few false positives
precision = precision_score(y_test, y_pred)

# Recall (Sensitivity): Of actual positives, % correctly predicted
# High recall = few false negatives
recall = recall_score(y_test, y_pred)

# F1: Harmonic mean of precision and recall
f1 = f1_score(y_test, y_pred)

# AUC-ROC: Overall discrimination ability (0.5-1.0)
auc = roc_auc_score(y_test, y_prob)

# Confusion matrix
cm = confusion_matrix(y_test, y_pred)
#              Predicted
#              Neg    Pos
# Actual Neg   TN     FP
# Actual Pos   FN     TP

# Full report
print(classification_report(y_test, y_pred))
When to use what: - Accuracy: Balanced classes - Precision: Cost of false positive is high (spam detection) - Recall: Cost of false negative is high (fraud detection, disease) - F1: Imbalanced classes, need balance of precision/recall - AUC: Comparing models, probability ranking matters
Confusion Matrix Visualization
import seaborn as sns
import matplotlib.pyplot as plt

cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()

6. Cross-Validation
Why: More reliable estimate than single train/test split
from sklearn.model_selection import cross_val_score

# 5-fold cross-validation
scores = cross_val_score(model, X, y, cv=5, scoring="accuracy")
print(f"Mean: {scores.mean():.3f} (+/- {scores.std():.3f})")

7. Handling Imbalanced Data
Problem: 95% negative, 5% positive → model predicts all negative
Solutions:
# 1. Class weights
model = LogisticRegression(class_weight="balanced")

# 2. Oversampling (SMOTE)
from imblearn.over_sampling import SMOTE
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)

# 3. Undersampling
from imblearn.under_sampling import RandomUnderSampler
rus = RandomUnderSampler(random_state=42)
X_resampled, y_resampled = rus.fit_resample(X_train, y_train)

# 4. Use appropriate metrics (F1, AUC, not accuracy)

8. Time Series Basics
Concepts
· Trend: Long-term direction (up, down, flat)
· Seasonality: Repeating patterns (weekly, monthly, yearly)
· Noise: Random variation
Decomposition
from statsmodels.tsa.seasonal import seasonal_decompose

result = seasonal_decompose(df["revenue"], model="additive", period=7)
result.plot()
plt.show()
Simple Forecasting
# Moving average
df["MA_7"] = df["revenue"].rolling(window=7).mean()

# Exponential smoothing
df["EMA_7"] = df["revenue"].ewm(span=7).mean()
Prophet (Facebook’s forecasting tool)
from prophet import Prophet

# Prepare data (must have 'ds' and 'y' columns)
prophet_df = df.rename(columns={"date": "ds", "revenue": "y"})

model = Prophet()
model.fit(prophet_df)

# Forecast next 30 days
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)

model.plot(forecast)

PART 3: INTERVIEW QUESTIONS & ANSWERS
Conceptual Questions
Q: What’s the difference between supervised and unsupervised learning? > Supervised: We have labeled data (known outcomes). Train model to predict labels. Examples: regression, classification. > Unsupervised: No labels. Find patterns/structure. Examples: clustering, dimensionality reduction.
Q: What’s the difference between classification and regression? > Classification: Predict categories (spam/not spam, churn yes/no) > Regression: Predict continuous values (price, revenue, temperature)
Q: Explain overfitting and how to prevent it. > Overfitting: Model performs well on training data but poorly on new data. It memorized instead of learning patterns. > Prevention: More data, simpler model, cross-validation, regularization (Ridge/Lasso), dropout (neural nets).
Q: What’s the bias-variance tradeoff? > Bias: Error from overly simple model (underfitting) > Variance: Error from overly complex model (overfitting) > Goal: Balance both for best generalization. > High bias = underfitting, High variance = overfitting.
Q: When would you use precision vs recall? > Precision when false positives are costly: spam filter (don’t want good emails in spam) > Recall when false negatives are costly: fraud detection, medical diagnosis (don’t want to miss fraud/disease)
Q: How do you handle missing data? > 1. Delete rows (if few missing) > 2. Fill with mean/median/mode > 3. Fill with domain knowledge > 4. Use algorithms that handle missing (XGBoost) > 5. Create “is_missing” indicator column
Q: How do you handle imbalanced classes? > 1. Resample (oversample minority, undersample majority) > 2. SMOTE (synthetic oversampling) > 3. Class weights > 4. Use appropriate metrics (F1, AUC, not accuracy)
Q: What is regularization? > Technique to prevent overfitting by penalizing complex models. > Ridge (L2): Shrinks coefficients > Lasso (L1): Can zero out coefficients (feature selection)
Q: How would you predict charter bus demand for CharterUP? > Time series forecasting: > 1. Analyze historical booking patterns > 2. Account for seasonality (summer, holidays) > 3. Day of week effects > 4. External factors: local events, weather > 5. Use Prophet or ARIMA > 6. Evaluate with hold-out set
Q: How would you identify customers likely to churn? > Classification problem: > 1. Define churn (no booking in X days) > 2. Features: booking frequency, recency, revenue, complaints > 3. Train Random Forest or Logistic Regression > 4. Evaluate with precision/recall (recall important - don’t miss churners) > 5. Identify top risk factors

Coding Practice
Problem 1: Train/test split and evaluate linear regression
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import numpy as np

X = df[["bookings", "distance"]]
y = df["revenue"]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

rmse = np.sqrt(mean_squared_error(y_test, y_pred))
r2 = r2_score(y_test, y_pred)
print(f"RMSE: {rmse:.2f}, R²: {r2:.2f}")
Problem 2: Build classification model and show metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix

X = df[["feature1", "feature2", "feature3"]]
y = df["churn"]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
Problem 3: Cross-validation
from sklearn.model_selection import cross_val_score

scores = cross_val_score(model, X, y, cv=5, scoring="accuracy")
print(f"Accuracy: {scores.mean():.3f} (+/- {scores.std():.3f})")
Problem 4: Feature importance
# For tree-based models
importance = pd.DataFrame({
    "feature": X.columns,
    "importance": model.feature_importances_
}).sort_values("importance", ascending=False)
print(importance)

QUICK CHEAT SHEET
	Task
	Algorithm
	Key Metric

	Predict continuous value
	Linear Regression, Random Forest Regressor
	RMSE, R²

	Predict yes/no
	Logistic Regression, Random Forest Classifier
	F1, AUC

	Group similar items
	K-Means, Hierarchical Clustering
	Silhouette

	Predict future values
	ARIMA, Prophet
	MAE, MAPE

	Feature selection
	Lasso, Random Forest importance
	—



	Problem
	Solution

	Overfitting
	More data, simpler model, regularization, cross-validation

	Imbalanced classes
	SMOTE, class weights, use F1/AUC not accuracy

	Missing data
	Fill with median, drop, or use algorithms that handle it

	Many features
	PCA, feature selection, Lasso

	Non-linear relationships
	Tree-based models, polynomial features


