CHARTERUP DATA SCIENCE SCENARIOS
Practice Problems Tailored to the Role

PURPOSE OF THIS GUIDE
This file contains CharterUP-specific modeling scenarios that align with the job description: - Predictive modeling for business outcomes - Time series forecasting - Statistical analysis for decision-making - Leadership-level insights - Model maintenance
Use these to prepare for technical discussions and case questions.

SCENARIO 1: BUS DEMAND FORECASTING
Business Context
CharterUP needs to forecast bus demand to optimize fleet allocation and operator partnerships.
Problem Statement
“Build a model to forecast weekly bus bookings for the next quarter based on historical data.”
Approach
Step 1: Understand the Data
-- Explore historical booking patterns
SELECT
    DATE_TRUNC('week', booking_date) AS week,
    COUNT(*) AS bookings,
    AVG(passenger_count) AS avg_passengers,
    SUM(revenue) AS total_revenue
FROM bookings
WHERE booking_date >= CURRENT_DATE - INTERVAL '2 years'
GROUP BY week
ORDER BY week;

-- Identify seasonal patterns
SELECT
    EXTRACT(MONTH FROM booking_date) AS month,
    EXTRACT(DOW FROM booking_date) AS day_of_week,
    COUNT(*) AS booking_count
FROM bookings
GROUP BY month, day_of_week
ORDER BY month, day_of_week;
Step 2: Feature Engineering
import pandas as pd
import numpy as np

# Load data
df = pd.read_sql(query, conn)
df['date'] = pd.to_datetime(df['date'])

# Time-based features
df['week_of_year'] = df['date'].dt.isocalendar().week
df['month'] = df['date'].dt.month
df['quarter'] = df['date'].dt.quarter
df['day_of_week'] = df['date'].dt.dayofweek
df['is_weekend'] = df['day_of_week'].isin([5, 6]).astype(int)

# Lag features (past demand)
df['bookings_lag_1'] = df['bookings'].shift(1)  # last week
df['bookings_lag_4'] = df['bookings'].shift(4)  # same week last month
df['bookings_lag_52'] = df['bookings'].shift(52)  # same week last year

# Rolling features (trends)
df['bookings_rolling_4'] = df['bookings'].rolling(4).mean()
df['bookings_rolling_12'] = df['bookings'].rolling(12).mean()

# Holiday indicator (you'd get this from a holidays library)
df['is_holiday'] = df['date'].isin(holiday_dates).astype(int)
Step 3: Build Time Series Model
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

# Prepare features
features = ['week_of_year', 'month', 'quarter', 'day_of_week', 'is_weekend',
            'bookings_lag_1', 'bookings_lag_4', 'bookings_lag_52',
            'bookings_rolling_4', 'bookings_rolling_12', 'is_holiday']

# Drop rows with NaN (from lag/rolling)
df_clean = df.dropna()

X = df_clean[features]
y = df_clean['bookings']

# Time series split (don't shuffle!)
split_point = int(len(df_clean) * 0.8)
X_train, X_test = X[:split_point], X[split_point:]
y_train, y_test = y[:split_point], y[split_point:]

# Train model
model = RandomForestRegressor(n_estimators=100, max_depth=10, random_state=42)
model.fit(X_train, y_train)

# Evaluate
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"RMSE: {np.sqrt(mse):.2f} bookings")
print(f"MAE: {mae:.2f} bookings")
print(f"R²: {r2:.3f}")

# Feature importance
importance_df = pd.DataFrame({
    'feature': features,
    'importance': model.feature_importances_
}).sort_values('importance', ascending=False)
print(importance_df)
Step 4: Present to Leadership
“What this means for the business”:
“Our forecast model predicts next quarter’s demand with 85% accuracy (R² = 0.85). Key insights:
1. Seasonality: Bookings spike 40% during Q2 (spring) and Q4 (holidays)
1. Day of week: Fridays see 2x the bookings of Tuesdays
1. Recommendation: Increase operator partnerships by 30% in March and November
1. Impact: Better fleet allocation could reduce lost bookings by ~12%”
Step 5: Model Maintenance
# Monitor model performance over time
def monitor_forecast_accuracy(actual, predicted, date):
    """Track forecast accuracy weekly."""
    mape = np.mean(np.abs((actual - predicted) / actual)) * 100

    log_entry = {
        'date': date,
        'mape': mape,
        'n_samples': len(actual)
    }

    # Alert if accuracy degrades
    if mape > 20:  # threshold
        send_alert(f"Forecast accuracy degraded: MAPE = {mape:.1f}%")

    return log_entry

# Retrain quarterly with new data
if current_date.month % 3 == 0:  # every quarter
    retrain_model(new_data)

SCENARIO 2: PRICING OPTIMIZATION MODEL
Business Context
CharterUP wants to optimize pricing based on route, distance, demand, and competition.
Problem Statement
“What factors drive booking prices, and how should we price a route dynamically?”
Approach
Step 1: Exploratory Analysis
-- Price variation by factors
SELECT
    distance_miles,
    passenger_count,
    day_of_week,
    AVG(price) AS avg_price,
    STDDEV(price) AS price_std,
    COUNT(*) AS n_bookings
FROM bookings
GROUP BY distance_miles, passenger_count, day_of_week
ORDER BY avg_price DESC;

-- Competitive pricing analysis
SELECT
    route_id,
    AVG(our_price) AS our_avg_price,
    AVG(competitor_price) AS competitor_avg_price,
    AVG(our_price - competitor_price) AS price_diff,
    SUM(CASE WHEN booked = 1 THEN 1 ELSE 0 END) / COUNT(*) AS conversion_rate
FROM pricing_experiments
GROUP BY route_id;
Step 2: Build Regression Model
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.preprocessing import StandardScaler

# Features
features = ['distance_miles', 'passenger_count', 'day_of_week',
            'advance_booking_days', 'competitor_price', 'demand_index']

X = df[features]
y = df['price']

# Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Scale
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Train
model = Ridge(alpha=1.0)
model.fit(X_train_scaled, y_train)

# Coefficients (interpret for business)
coef_df = pd.DataFrame({
    'feature': features,
    'coefficient': model.coef_
}).sort_values('coefficient', ascending=False)

print(coef_df)
# Output interpretation:
# distance_miles: +15.2 → $15.20 per additional mile
# demand_index: +8.5 → $8.50 when demand increases by 1 unit
Step 3: Leadership Insight
“Our pricing model explains 82% of price variation. Key drivers:
· Distance is the #1 factor: ~$15/mile
· Peak days (Fri/Sat) command 18% premium
· Advance booking < 7 days → 22% price increase
· Recommendation: Implement dynamic pricing that adjusts for these factors
· Expected impact: 5-8% revenue increase without hurting conversion”

SCENARIO 3: CHURN PREDICTION (CLASSIFICATION)
Business Context
CharterUP wants to identify operators at risk of leaving the platform.
Problem Statement
“Build a model to predict which operators will churn in the next 90 days.”
Approach
Step 1: Define Churn & Features
-- Define churn: no bookings in last 90 days
WITH operator_activity AS (
    SELECT
        operator_id,
        MAX(booking_date) AS last_booking,
        COUNT(*) AS total_bookings,
        AVG(rating) AS avg_rating,
        AVG(revenue) AS avg_revenue,
        STDDEV(revenue) AS revenue_volatility
    FROM bookings
    WHERE booking_date >= CURRENT_DATE - INTERVAL '1 year'
    GROUP BY operator_id
)
SELECT
    operator_id,
    CASE
        WHEN last_booking < CURRENT_DATE - INTERVAL '90 days' THEN 1
        ELSE 0
    END AS churned,
    total_bookings,
    avg_rating,
    avg_revenue,
    revenue_volatility,
    EXTRACT(DAY FROM CURRENT_DATE - last_booking) AS days_since_last
FROM operator_activity;
Step 2: Build Classification Model
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, roc_auc_score, confusion_matrix

features = ['total_bookings', 'avg_rating', 'avg_revenue',
            'revenue_volatility', 'days_since_last', 'support_tickets']

X = df[features]
y = df['churned']

# Handle class imbalance
from imblearn.over_sampling import SMOTE
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)

# Train
X_train, X_test, y_train, y_test = train_test_split(
    X_resampled, y_resampled, test_size=0.2, random_state=42
)

model = RandomForestClassifier(n_estimators=100, max_depth=8, random_state=42)
model.fit(X_train, y_train)

# Evaluate
y_pred = model.predict(X_test)
y_prob = model.predict_proba(X_test)[:, 1]

print(classification_report(y_test, y_pred))
print(f"ROC-AUC: {roc_auc_score(y_test, y_prob):.3f}")

# Feature importance
for feature, importance in zip(features, model.feature_importances_):
    print(f"{feature}: {importance:.3f}")
Step 3: Actionable Insights
# Identify high-risk operators
df['churn_probability'] = model.predict_proba(X)[:, 1]
high_risk = df[df['churn_probability'] > 0.7].sort_values('churn_probability', ascending=False)

# Dashboard metric
print(f"High-risk operators: {len(high_risk)}")
print(f"Potential revenue at risk: ${high_risk['avg_revenue'].sum():,.0f}")
Leadership Presentation: > “Our churn model identifies operators at risk with 78% accuracy. Findings: > > - 143 operators at high risk (>70% churn probability) > - Potential revenue loss: $2.3M annually > - Key risk factors: declining ratings, 20+ days since last booking, unresolved support tickets > - Recommendation: Proactive outreach program for high-risk operators > - Intervention: Offer incentives, resolve issues → could retain 40% → $920K saved”

SCENARIO 4: ROUTE OPTIMIZATION
Business Context
Identify underperforming routes and recommend which to discontinue or expand.
Approach
Statistical Analysis
-- Route profitability analysis
SELECT
    route_id,
    origin_city,
    destination_city,
    COUNT(*) AS total_bookings,
    AVG(revenue) AS avg_revenue,
    AVG(profit_margin) AS avg_margin,
    SUM(revenue) AS total_revenue,
    AVG(customer_rating) AS avg_rating,
    -- Statistical significance test would go here
    CASE
        WHEN COUNT(*) < 30 THEN 'Insufficient data'
        WHEN AVG(profit_margin) < 0.15 THEN 'Unprofitable'
        WHEN AVG(profit_margin) >= 0.30 THEN 'High-value'
        ELSE 'Moderate'
    END AS route_category
FROM bookings
WHERE booking_date >= CURRENT_DATE - INTERVAL '6 months'
GROUP BY route_id, origin_city, destination_city
ORDER BY total_revenue DESC;
Python Analysis
# A/B test: Is the difference in conversion significant?
from scipy.stats import ttest_ind

route_a = df[df['route_id'] == 'ATL-NYC']['conversion_rate']
route_b = df[df['route_id'] == 'ATL-MIA']['conversion_rate']

t_stat, p_value = ttest_ind(route_a, route_b)

if p_value < 0.05:
    print(f"Routes are significantly different (p={p_value:.4f})")
else:
    print(f"No significant difference (p={p_value:.4f})")
Leadership Decision: > “Route analysis of 247 active routes: > > - 38 routes are unprofitable (< 15% margin) > - 62 routes are high-value (> 30% margin) > - Recommendation: > - Discontinue 12 routes with <30 bookings/month AND <10% margin → $180K cost savings > - Double marketing spend on top 20 high-value routes → projected $450K revenue increase”

SCENARIO 5: DRIVER PERFORMANCE SCORING
Business Context
Create a data-driven driver performance score for safety and quality.
Classification + Regression Hybrid
# Multi-output model
features = ['total_trips', 'avg_rating', 'on_time_pct', 'cancellation_rate',
            'accidents', 'customer_complaints', 'years_experience']

# Performance categories
df['performance_tier'] = pd.cut(df['composite_score'],
                                bins=[0, 60, 80, 100],
                                labels=['Needs Improvement', 'Good', 'Excellent'])

from sklearn.ensemble import GradientBoostingClassifier

X = df[features]
y = df['performance_tier']

model = GradientBoostingClassifier(n_estimators=100, max_depth=5)
model.fit(X_train, y_train)

# Predict for new drivers
new_driver_tier = model.predict(new_driver_features)
KPI Dashboard:
# Track key metrics
kpis = {
    'Drivers in "Excellent" tier': (df['performance_tier'] == 'Excellent').sum(),
    'Avg customer rating': df['avg_rating'].mean(),
    'On-time percentage': df['on_time_pct'].mean(),
    'Drivers needing training': (df['performance_tier'] == 'Needs Improvement').sum()
}

KEY INTERVIEW TALKING POINTS
When discussing these scenarios:
1. Model Building Process
“I’d start by understanding the business goal, then explore the data with SQL. I’d check for seasonality, outliers, and missing data. For feature engineering, I’d create lag features for time series, and encode categorical variables. I’d use train/test split—or time-based split for forecasting—to avoid data leakage.”
2. Model Selection
“For bus demand forecasting, I’d compare ARIMA, Prophet, and Random Forest. Random Forest often works well because it handles non-linear patterns and doesn’t assume stationarity. For classification like churn, I’d try Logistic Regression for interpretability and Random Forest for accuracy.”
3. Communicating to Leadership
“I always translate technical results into business impact. Instead of saying ‘R² is 0.85,’ I’d say ‘the model predicts demand with 85% accuracy, which could help us allocate fleet 12% more efficiently, reducing lost bookings by $200K annually.’”
4. Model Maintenance
“Models degrade over time as patterns change. I’d set up monitoring for key metrics—like MAPE for forecasts or AUC for classification. If performance drops below a threshold, I’d investigate: is it data drift? Seasonal changes? Then retrain quarterly or as needed.”
5. Handling Missing Data
“It depends on the % missing and pattern. If <5% and random, I might impute with median/mode. If >20%, I’d investigate why—is it systemic? For time series, forward-fill makes sense. For important features, I might create a ‘missing’ flag as its own signal.”

PRACTICE EXERCISES
Try answering these out loud:
1. “Walk me through how you’d build a model to forecast daily bus bookings for the next month.”
1. “We want to optimize pricing for a new route. What data would you need and what approach would you take?”
1. “How would you identify which operators are at risk of leaving our platform?”
1. “Our forecast model’s accuracy dropped from 85% to 70% this month. How would you diagnose and fix it?”
1. “How would you measure the success of a new dynamic pricing strategy?”
1. “Explain to a non-technical executive how a Random Forest model works and why we should use it for demand forecasting.”

Good luck! These scenarios show you can translate CharterUP’s real business needs into data science solutions.
