CharterUP Practice Problems & Mock Scenarios
Hands-On Case Studies with Solutions
Interview: Monday, January 5, 2025 @ 10:00 AM EST
Position: Data Analyst | Data Science Team | Atlanta, GA

Table of Contents
Part 1: Python Coding Challenges
 → Data Manipulation
 → Analysis & Aggregation
 → Time Series
Part 2: SQL Coding Challenges
 → Window Functions
 → Business Logic
 → CharterUP Scenarios
Part 3: Statistical & Modeling Questions
 → Regression
 → Classification
 → Model Evaluation
Part 4: Case Study: CharterUP Demand Forecast
Part 5: Case Study: Route Profitability Analysis

Part 1: Python Coding Challenges
Challenge 1: Data Cleaning
Problem: You have a DataFrame with booking data. Some revenue values are missing, some are negative (data errors), and customer_id has some nulls. Clean the data.
import pandas as pd
import numpy as np

Sample data
data = {
 'booking_id': [1, 2, 3, 4, 5, 6],
 'customer_id': [101, 102, None, 104, 105, 101],
 'revenue': [500, -100, None, 1200, 800, np.nan],
 'booking_date': ['2024-01-15', '2024-01-16', '2024-01-17', '2024-01-18', '2024-01-19', '2024-01-20']
}
df = pd.DataFrame(data)

print("Original Data:")
print(df)
print("\nNull counts:")
print(df.isnull().sum())
Your Task:
1. Remove rows where customer_id is null
2. Replace negative revenue values with 0
3. Fill missing revenue with the median revenue
4. Convert booking_date to datetime type
Solution:
1. Remove rows where customer_id is null
df = df.dropna(subset=['customer_id'])

2. Replace negative revenue with 0
df['revenue'] = df['revenue'].apply(lambda x: 0 if x < 0 else x)
OR: df['revenue'] = df['revenue'].clip(lower=0)

3. Fill missing revenue with median
median_revenue = df['revenue'].median()
df['revenue'] = df['revenue'].fillna(median_revenue)

4. Convert booking_date to datetime
df['booking_date'] = pd.to_datetime(df['booking_date'])

print("\nCleaned Data:")
print(df)
print("\nData types:")
print(df.dtypes)
print("\nNull counts after cleaning:")
print(df.isnull().sum())

Challenge 2: GroupBy and Aggregation
Problem: Calculate total revenue, number of bookings, and average booking value by city.
Sample data
data = {
 'booking_id': range(1, 11),
 'city': ['Atlanta', 'Miami', 'Atlanta', 'Charlotte', 'Miami', 'Atlanta', 'Charlotte', 'Miami', 'Atlanta', 'Charlotte'],
 'revenue': [500, 800, 600, 450, 900, 550, 500, 850, 700, 480]
}
df = pd.DataFrame(data)
Your Task: Create a summary with total_revenue, num_bookings, and avg_revenue per city, sorted by total_revenue descending.
Solution:
Method 1: Using agg()
summary = df.groupby('city').agg({
 'revenue': ['sum', 'count', 'mean']
}).reset_index()
summary.columns = ['city', 'total_revenue', 'num_bookings', 'avg_revenue']
summary = summary.sort_values('total_revenue', ascending=False)

print(summary)

Method 2: Separate aggregations
summary = df.groupby('city')['revenue'].agg([
 ('total_revenue', 'sum'),
 ('num_bookings', 'count'),
 ('avg_revenue', 'mean')
]).reset_index().sort_values('total_revenue', ascending=False)

print(summary)

Challenge 3: Merging DataFrames
Problem: You have two DataFrames: bookings and customers. Join them to get customer names with their booking info.
Bookings data
bookings = pd.DataFrame({
 'booking_id': [1, 2, 3, 4, 5],
 'customer_id': [101, 102, 103, 101, 104],
 'revenue': [500, 800, 600, 550, 900]
})

Customers data
customers = pd.DataFrame({
 'customer_id': [101, 102, 103, 105],
 'customer_name': ['Acme Corp', 'Beta LLC', 'Gamma Inc', 'Delta Co']
})
Your Task:
1. Join bookings with customers (left join - keep all bookings)
2. Fill missing customer names with "Unknown"
3. Calculate total revenue per customer
Solution:
1. Left join
merged = pd.merge(bookings, customers, on='customer_id', how='left')

2. Fill missing names
merged['customer_name'] = merged['customer_name'].fillna('Unknown')

print("Merged Data:")
print(merged)

3. Total revenue per customer
customer_revenue = merged.groupby('customer_name')['revenue'].sum().reset_index()
customer_revenue = customer_revenue.sort_values('revenue', ascending=False)

print("\nRevenue by Customer:")
print(customer_revenue)

Challenge 4: Time Series Analysis
Problem: Calculate 7-day moving average of daily bookings.
Sample data
data = {
 'date': pd.date_range('2024-01-01', periods=30, freq='D'),
 'num_bookings': [45, 50, 48, 52, 60, 55, 58, 62, 65, 70,
 68, 72, 75, 78, 80, 82, 85, 88, 90, 92,
 95, 98, 100, 102, 105, 108, 110, 112, 115, 118]
}
df = pd.DataFrame(data)
Your Task:
1. Calculate 7-day moving average
2. Calculate day-over-day change
3. Identify days where bookings exceeded the 7-day moving average
Solution:
1. 7-day moving average
df['bookings_ma_7'] = df['num_bookings'].rolling(window=7).mean()

2. Day-over-day change
df['bookings_change'] = df['num_bookings'].diff()

3. Days exceeding moving average
df['exceeds_ma'] = df['num_bookings'] > df['bookings_ma_7']

print(df.head(10))

Count days exceeding MA
print(f"\nDays exceeding 7-day MA: {df['exceeds_ma'].sum()}")

Plot (optional)
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 6))
plt.plot(df['date'], df['num_bookings'], label='Daily Bookings', marker='o')
plt.plot(df['date'], df['bookings_ma_7'], label='7-Day MA', linestyle='--')
plt.xlabel('Date')
plt.ylabel('Number of Bookings')
plt.title('Daily Bookings vs 7-Day Moving Average')
plt.legend()
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

Part 2: SQL Coding Challenges
Challenge 1: Top N per Group
Problem: Find the top 3 highest-revenue bookings for each city.
Schema:
bookings (
 booking_id INT,
 city VARCHAR,
 revenue DECIMAL,
 booking_date DATE
)
Solution:
WITH ranked AS (
 SELECT
 booking_id,
 city,
 revenue,
 booking_date,
 ROW_NUMBER() OVER (PARTITION BY city ORDER BY revenue DESC) AS rn
 FROM bookings
)
SELECT
 booking_id,
 city,
 revenue,
 booking_date
FROM ranked
WHERE rn <= 3
ORDER BY city, rn;

Challenge 2: Month-over-Month Growth
Problem: Calculate month-over-month revenue growth for each month in 2024.
Solution:
WITH monthly_revenue AS (
 SELECT
 DATE_FORMAT(booking_date, '%Y-%m-01') AS month,
 SUM(revenue) AS total_revenue
 FROM bookings
 WHERE booking_date >= '2024-01-01' AND booking_date < '2025-01-01'
 GROUP BY DATE_FORMAT(booking_date, '%Y-%m-01')
)
SELECT
 month,
 total_revenue,
 LAG(total_revenue) OVER (ORDER BY month) AS prev_month_revenue,
 ROUND(
 100.0 * (total_revenue - LAG(total_revenue) OVER (ORDER BY month)) /
 NULLIF(LAG(total_revenue) OVER (ORDER BY month), 0),
 2
) AS mom_growth_pct
FROM monthly_revenue
ORDER BY month;

Challenge 3: Customer Cohort Analysis
Problem: Identify customers who made their first booking in Q1 2024 and track how many of them booked again in Q2 2024.
Solution:
WITH first_bookings AS (
 SELECT
 customer_id,
 MIN(booking_date) AS first_booking_date
 FROM bookings
 GROUP BY customer_id
),
q1_customers AS (
 SELECT customer_id
 FROM first_bookings
 WHERE first_booking_date >= '2024-01-01'
 AND first_booking_date < '2024-04-01'
),
q2_activity AS (
 SELECT DISTINCT customer_id
 FROM bookings
 WHERE booking_date >= '2024-04-01'
 AND booking_date < '2024-07-01'
)
SELECT
 COUNT(DISTINCT qc.customer_id) AS q1_cohort_size,
 COUNT(DISTINCT qa.customer_id) AS returned_in_q2,
 ROUND(100.0 * COUNT(DISTINCT qa.customer_id) / COUNT(DISTINCT qc.customer_id), 2) AS retention_pct
FROM q1_customers qc
LEFT JOIN q2_activity qa ON qc.customer_id = qa.customer_id;

Challenge 4: CharterUP - Fleet Utilization
Problem: Calculate vehicle utilization rate (% of days each vehicle was booked) in December 2024.
Schema:
vehicles (vehicle_id INT, vehicle_type VARCHAR)
bookings (booking_id INT, vehicle_id INT, booking_date DATE)
Solution:
WITH december_days AS (
 SELECT 31 AS total_days
),
vehicle_bookings AS (
 SELECT
 v.vehicle_id,
 v.vehicle_type,
 COUNT(DISTINCT DATE(b.booking_date)) AS days_booked
 FROM vehicles v
 LEFT JOIN bookings b
 ON v.vehicle_id = b.vehicle_id
 AND b.booking_date >= '2024-12-01'
 AND b.booking_date < '2025-01-01'
 GROUP BY v.vehicle_id, v.vehicle_type
)
SELECT
 vehicle_id,
 vehicle_type,
 days_booked,
 (SELECT total_days FROM december_days) AS total_days,
 ROUND(100.0 * days_booked / (SELECT total_days FROM december_days), 2) AS utilization_pct
FROM vehicle_bookings
ORDER BY utilization_pct DESC;

Challenge 5: CharterUP - Route Profitability
Problem: Calculate net profit per route (origin → destination), considering revenue, fuel costs, and driver costs.
Schema:
bookings (booking_id, origin_city, destination_city, revenue, miles, duration_hours, vehicle_id, driver_id)
vehicles (vehicle_id, fuel_cost_per_mile DECIMAL)
drivers (driver_id, hourly_rate DECIMAL)
Solution:
SELECT
 b.origin_city,
 b.destination_city,
 COUNT(*) AS num_trips,
 SUM(b.revenue) AS total_revenue,
 SUM(b.miles * v.fuel_cost_per_mile) AS total_fuel_cost,
 SUM(b.duration_hours * d.hourly_rate) AS total_driver_cost,
 SUM(b.revenue) - SUM(b.miles * v.fuel_cost_per_mile) - SUM(b.duration_hours * d.hourly_rate) AS net_profit,
 ROUND(
 100.0 * (SUM(b.revenue) - SUM(b.miles * v.fuel_cost_per_mile) - SUM(b.duration_hours * d.hourly_rate)) /
 SUM(b.revenue),
 2
) AS profit_margin_pct
FROM bookings b
JOIN vehicles v ON b.vehicle_id = v.vehicle_id
JOIN drivers d ON b.driver_id = d.driver_id
WHERE b.booking_date >= CURDATE() - INTERVAL 1 YEAR
GROUP BY b.origin_city, b.destination_city
HAVING num_trips >= 10 -- Minimum volume threshold
ORDER BY net_profit DESC
LIMIT 10;

Part 3: Statistical & Modeling Questions
Question 1: When to Use Regression vs. Classification?
Answer:
Regression: Use when predicting a continuous value (numbers)
• Example: Predict booking revenue, predict trip duration, predict demand
• Output: A number (e.g., $1,250, 3.5 hours, 85 bookings)
• Metrics: MAE, RMSE, R²

Classification: Use when predicting a category or class
• Example: Predict if a booking will be cancelled (yes/no), predict customer segment (high/medium/low value)
• Output: A category (e.g., "cancelled" or "completed", "premium" or "standard")
• Metrics: Accuracy, precision, recall, F1, ROC AUC

Key Difference: The target variable's data type determines which to use.

Question 2: Explain R² (R-squared) in Simple Terms
Answer:
R² measures "how much of the variation in the target is explained by the model."

Scale: 0 to 1 (can be negative for very bad models)
• R² = 0: Model explains none of the variance (as bad as guessing the mean)
• R² = 1: Model explains all variance perfectly (very rare in real data)
• R² = 0.7: Model explains 70% of variance (generally good for real-world data)

Example: If you're predicting booking revenue and R² = 0.75, it means your model captures 75% of the reasons why revenue varies. The remaining 25% is due to factors not in your model (or randomness).

Caution: R² doesn't tell you if the model will generalize to new data. Always check test set performance!

Question 3: What is Overfitting? How Do You Prevent It?
Answer:
Overfitting: When a model memorizes the training data instead of learning general patterns.
• Signs: High training accuracy, low test accuracy
• Problem: Model won't perform well on new data

How to Prevent Overfitting:
1. Use more training data (if possible)
2. Use simpler models (reduce complexity)
3. Apply regularization (L1, L2 penalties)
4. Use cross-validation to tune hyperparameters
5. Reduce feature count (remove irrelevant features)
6. Use ensemble methods like Random Forest (averages multiple trees)

Example: If your Random Forest has 100% training accuracy but 60% test accuracy, it's overfitting. Try reducing tree depth or increasing min_samples_split.

Question 4: Precision vs. Recall - When Does Each Matter?
Answer:
Precision: Of predicted positives, how many are actually positive?
• Formula: TP / (TP + FP)
• When it matters: When false positives are costly
• Example: Predicting which customers will cancel. If you offer retention discounts to predicted cancellations, you don't want to waste discounts on customers who wouldn't cancel anyway (minimize false positives).

Recall (Sensitivity): Of actual positives, how many did we catch?
• Formula: TP / (TP + FN)
• When it matters: When missing positives is costly
• Example: Predicting fraud. You want to catch all fraud cases even if it means flagging some legitimate transactions (minimize false negatives).

Trade-off: Increasing precision often decreases recall and vice versa. Use F1 score to balance both.

CharterUP Example:
• Cancellation prediction: Recall matters more—you want to catch all at-risk bookings so you can take action.
• Premium customer classification: Precision matters more—you don't want to offer VIP perks to customers who won't generate high revenue.

Question 5: How Do You Handle Imbalanced Data in Classification?
Answer:
Imbalanced data: When one class is much more common than another (e.g., 95% bookings complete, 5% cancelled)

Problem: Model can achieve high accuracy by always predicting the majority class, but it won't catch the minority class.

Solutions:
1. Use stratified train-test split (maintain class distribution)
2. Use appropriate metrics: Focus on precision, recall, F1, ROC AUC instead of accuracy
3. Resampling:
 • Oversample minority class (duplicate rare examples)
 • Undersample majority class (reduce common examples)
 • SMOTE (Synthetic Minority Oversampling Technique)
4. Adjust class weights in the model (penalize misclassifying minority class more)
5. Use ensemble methods (Random Forest, XGBoost handle imbalance better)

Example: If predicting cancellations (5% of bookings), use class_weight='balanced' in scikit-learn to automatically adjust for imbalance.

Part 4: Case Study - CharterUP Demand Forecasting
Scenario:
 CharterUP wants to forecast daily bookings for the next 30 days to optimize fleet allocation. You have 2 years of historical daily booking data.

Your task:
1. Explore the data
2. Identify seasonality patterns
3. Build a forecasting model
4. Evaluate accuracy
5. Present recommendations
Step 1: Explore the Data
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Load data (assume you have daily_bookings.csv)
df = pd.read_csv('daily_bookings.csv')
df['date'] = pd.to_datetime(df['date'])

Basic exploration
print(df.head())
print(df.describe())
print(f"Date range: {df['date'].min()} to {df['date'].max()}")

Plot time series
plt.figure(figsize=(14, 6))
plt.plot(df['date'], df['num_bookings'])
plt.xlabel('Date')
plt.ylabel('Number of Bookings')
plt.title('Daily Bookings Over Time')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

Add date features
df['day_of_week'] = df['date'].dt.dayofweek
df['month'] = df['date'].dt.month
df['is_weekend'] = (df['day_of_week'] >= 5).astype(int)

Check for seasonality
plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)
sns.boxplot(data=df, x='day_of_week', y='num_bookings')
plt.title('Bookings by Day of Week')

plt.subplot(1, 2, 2)
sns.boxplot(data=df, x='month', y='num_bookings')
plt.title('Bookings by Month')

plt.tight_layout()
plt.show()
Step 2: Build Forecasting Model
Option 1: Prophet (Simple, Handles Seasonality)
from prophet import Prophet

Prepare data for Prophet (needs 'ds' and 'y' columns)
df_prophet = df[['date', 'num_bookings']].rename(columns={'date': 'ds', 'num_bookings': 'y'})

Create and fit model
model = Prophet(yearly_seasonality=True, weekly_seasonality=True)
model.fit(df_prophet)

Forecast next 30 days
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)

Plot
model.plot(forecast)
plt.title('Booking Forecast with Prophet')
plt.show()

model.plot_components(forecast)
plt.show()

Get forecast values
print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(30))
Option 2: Machine Learning with Lag Features
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error
import numpy as np

Create lag features
df['bookings_lag_1'] = df['num_bookings'].shift(1)
df['bookings_lag_7'] = df['num_bookings'].shift(7)
df['bookings_lag_30'] = df['num_bookings'].shift(30)
df['bookings_ma_7'] = df['num_bookings'].rolling(window=7).mean()

Drop rows with NaN from lag features
df = df.dropna()

Features and target
features = ['bookings_lag_1', 'bookings_lag_7', 'bookings_lag_30',
 'bookings_ma_7', 'day_of_week', 'month', 'is_weekend']
X = df[features]
y = df['num_bookings']

Time series split (no shuffle!)
split_idx = int(len(df) * 0.8)
X_train, X_test = X[:split_idx], X[split_idx:]
y_train, y_test = y[:split_idx], y[split_idx:]

Train Random Forest
model = RandomForestRegressor(n_estimators=100, max_depth=10, random_state=42)
model.fit(X_train, y_train)

Predict
y_pred = model.predict(X_test)

Evaluate
mae = mean_absolute_error(y_test, y_pred)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))

print(f'MAE: {mae:.2f} bookings')
print(f'RMSE: {rmse:.2f} bookings')

Feature importance
feature_imp = pd.DataFrame({
 'feature': features,
 'importance': model.feature_importances_
}).sort_values('importance', ascending=False)
print(feature_imp)
Step 3: Recommendations
Fleet Allocation: Use forecasts to schedule vehicle maintenance during low-demand days
Driver Scheduling: Anticipate high-demand weekends and ensure adequate driver availability
Pricing Strategy: Consider dynamic pricing during high-demand periods
Marketing: Target promotional campaigns during forecasted low-demand periods
Model Monitoring: Re-train model monthly with new data to maintain accuracy

Part 5: Case Study - Route Profitability Analysis
Scenario:
 CharterUP leadership wants to know which routes are most profitable and whether any routes should be discontinued.

Available data:
• bookings table: booking_id, origin_city, destination_city, revenue, miles, duration_hours, vehicle_id, driver_id, booking_date
• vehicles table: vehicle_id, vehicle_type, fuel_cost_per_mile
• drivers table: driver_id, hourly_rate

Your task:
1. Calculate profit by route
2. Identify unprofitable routes
3. Recommend actions
Step 1: SQL Query to Calculate Route Profitability
WITH route_metrics AS (
 SELECT
 b.origin_city,
 b.destination_city,
 CONCAT(b.origin_city, ' → ', b.destination_city) AS route,
 COUNT(*) AS num_trips,
 SUM(b.revenue) AS total_revenue,
 AVG(b.revenue) AS avg_revenue_per_trip,
 SUM(b.miles * v.fuel_cost_per_mile) AS total_fuel_cost,
 SUM(b.duration_hours * d.hourly_rate) AS total_driver_cost,
 SUM(b.revenue) - SUM(b.miles * v.fuel_cost_per_mile) - SUM(b.duration_hours * d.hourly_rate) AS net_profit,
 ROUND(
 100.0 * (SUM(b.revenue) - SUM(b.miles * v.fuel_cost_per_mile) - SUM(b.duration_hours * d.hourly_rate)) /
 NULLIF(SUM(b.revenue), 0),
 2
) AS profit_margin_pct,
 AVG(b.miles) AS avg_miles
 FROM bookings b
 JOIN vehicles v ON b.vehicle_id = v.vehicle_id
 JOIN drivers d ON b.driver_id = d.driver_id
 WHERE b.booking_date >= CURDATE() - INTERVAL 1 YEAR
 GROUP BY b.origin_city, b.destination_city
 HAVING num_trips >= 5 -- Minimum volume
)
SELECT
 route,
 num_trips,
 ROUND(total_revenue, 2) AS total_revenue,
 ROUND(avg_revenue_per_trip, 2) AS avg_revenue_per_trip,
 ROUND(total_fuel_cost, 2) AS total_fuel_cost,
 ROUND(total_driver_cost, 2) AS total_driver_cost,
 ROUND(net_profit, 2) AS net_profit,
 profit_margin_pct,
 ROUND(avg_miles, 0) AS avg_miles,
 CASE
 WHEN profit_margin_pct < 10 THEN 'Low'
 WHEN profit_margin_pct < 25 THEN 'Medium'
 ELSE 'High'
 END AS profitability_tier
FROM route_metrics
ORDER BY net_profit DESC;
Step 2: Python Analysis
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Load query results
df = pd.read_sql(query, connection) # Or read from CSV

Summary statistics
print(df.describe())
print(f"\nTotal routes analyzed: {len(df)}")
print(f"Total net profit: ${df['net_profit'].sum():,.2f}")

Identify unprofitable routes
unprofitable = df[df['profit_margin_pct'] < 10]
print(f"\nUnprofitable routes (margin < 10%): {len(unprofitable)}")
print(unprofitable[['route', 'num_trips', 'net_profit', 'profit_margin_pct']])

Visualize profitability
plt.figure(figsize=(14, 6))

plt.subplot(1, 2, 1)
df_top20 = df.nlargest(20, 'net_profit')
sns.barplot(data=df_top20, y='route', x='net_profit', palette='viridis')
plt.title('Top 20 Routes by Net Profit')
plt.xlabel('Net Profit ($)')

plt.subplot(1, 2, 2)
sns.scatterplot(data=df, x='num_trips', y='profit_margin_pct', hue='profitability_tier', s=100)
plt.axhline(y=10, color='red', linestyle='--', label='10% threshold')
plt.title('Profitability by Volume')
plt.xlabel('Number of Trips')
plt.ylabel('Profit Margin %')
plt.legend()

plt.tight_layout()
plt.show()
Step 3: Recommendations
High-Profit Routes: Increase marketing and capacity on top 10 routes. Consider premium pricing.
Low-Volume High-Margin Routes: Explore why volume is low. Could targeted marketing increase bookings?
High-Volume Low-Margin Routes: Negotiate better fuel rates, optimize driver scheduling, or increase prices slightly.
Unprofitable Routes (<10% margin): Discontinue or re-negotiate pricing. Focus resources on profitable routes.
Monitor Seasonality: Some routes may be profitable seasonally. Check quarterly profitability before discontinuing.

Interview Day Tips
Code out loud: Explain your thought process as you write code
Start simple: Get a basic solution working, then optimize
Test your code: Walk through an example to verify it works
Ask clarifying questions: "Should I handle nulls?" "What if there are ties?"
Connect to business: Explain what the results mean for CharterUP
Show your work: Comment your code, explain why you chose an approach
Be honest about gaps: If you don't know something, say so and explain how you'd figure it out
Prepare questions: Have 2-3 thoughtful questions ready for them

You're ready! Show them what you can do! 🚀

