CharterUP Technical Interview Guide
Python • SQL • Tableau • Statistical Modeling
Interview: Monday, January 5, 2025 @ 10:00 AM EST

Part 1: Python Essentials
Filtering Data
import pandas as pd

Real example: CharterUP bookings
bookings = pd.DataFrame({
 'booking_id': [1, 2, 3, 4, 5, 6],
 'city': ['Atlanta', 'Miami', 'Atlanta', None, 'Miami', 'Atlanta'],
 'revenue': [500, -100, 1200, 800, None, 650]
})

Single condition
atlanta = bookings[bookings['city'] == 'Atlanta']

Multiple conditions (AND)
high_atl = bookings[(bookings['city'] == 'Atlanta') & (bookings['revenue'] > 600)]

Multiple conditions (OR)
south = bookings[(bookings['city'] == 'Atlanta') | (bookings['city'] == 'Miami')]

Using .isin()
cities = bookings[bookings['city'].isin(['Atlanta', 'Miami', 'Charlotte'])]
⚠️ GOTCHA: Use & and | (not "and"/"or"). Always use parentheses: (condition1) & (condition2)
⚠️ GOTCHA: NaN comparisons always return False. Use .isna() or .notna() to check nulls.
WRONG: This won't catch nulls
bookings[bookings['city'] == None] # Returns empty!

RIGHT:
bookings[bookings['city'].isna()]
GroupBy and Aggregation
Real example: Revenue by city
bookings = pd.DataFrame({
 'city': ['Atlanta', 'Miami', 'Atlanta', 'Miami', 'Atlanta'],
 'revenue': [500, 800, 600, 900, 550],
 'passengers': [20, 30, 25, 35, 22]
})

Single aggregation
total_by_city = bookings.groupby('city')['revenue'].sum()
Output: Atlanta: 1650, Miami: 1700

Multiple aggregations
summary = bookings.groupby('city')['revenue'].agg(['sum', 'mean', 'count']).reset_index()

Different aggregations per column
summary = bookings.groupby('city').agg({
 'revenue': ['sum', 'mean'],
 'passengers': 'sum',
 'booking_id': 'count' # Count bookings
}).reset_index()

Rename columns for clarity
summary.columns = ['city', 'total_revenue', 'avg_revenue', 'total_passengers', 'num_bookings']
⚠️ GOTCHA: .groupby() returns a MultiIndex. Use .reset_index() to convert back to regular DataFrame.
⚠️ GOTCHA: Count bookings with .size() (includes nulls) or "column_name": "count" (excludes nulls).
Merging DataFrames
Real example: Join bookings with customers
bookings = pd.DataFrame({
 'booking_id': [1, 2, 3, 4],
 'customer_id': [101, 102, 103, 104],
 'revenue': [500, 800, 600, 900]
})

customers = pd.DataFrame({
 'customer_id': [101, 102, 105], # Note: 103, 104 missing; 105 extra
 'customer_name': ['Acme Corp', 'Beta LLC', 'Gamma Inc']
})

LEFT JOIN (keep all bookings)
result = pd.merge(bookings, customers, on='customer_id', how='left')
booking_id=3,4 will have NaN for customer_name

INNER JOIN (only matching rows)
result = pd.merge(bookings, customers, on='customer_id', how='inner')
Only booking_id=1,2 remain

Different column names
result = pd.merge(df1, df2, left_on='cust_id', right_on='id', how='left')
⚠️ GOTCHA: Default is inner join! Specify how="left" to keep all rows from left DataFrame.
⚠️ GOTCHA: If join keys have duplicates, merge creates Cartesian product (can explode rows!).
Handling Missing Values
bookings = pd.DataFrame({
 'customer_id': [101, None, 103, 104],
 'revenue': [500, -100, None, 800]
})

Check nulls
print(bookings.isnull().sum())

Drop rows where customer_id is null
clean = bookings.dropna(subset=['customer_id'])

Fill nulls with median
bookings['revenue'] = bookings['revenue'].fillna(bookings['revenue'].median())

Fill by group (e.g., median revenue per city)
bookings['revenue'] = bookings.groupby('city')['revenue'].transform(
 lambda x: x.fillna(x.median())
)

Replace negative values
bookings['revenue'] = bookings['revenue'].clip(lower=0)
⚠️ GOTCHA: .dropna() without subset= drops rows with ANY null. Be specific!
⚠️ GOTCHA: Calculate median BEFORE filling nulls, or it will include the filled values.
Time Series Operations
import pandas as pd

Real example: Daily bookings
daily = pd.DataFrame({
 'date': pd.date_range('2024-01-01', periods=10),
 'bookings': [45, 50, 48, 52, 60, 55, 58, 62, 65, 70]
})

daily['date'] = pd.to_datetime(daily['date']) # Ensure datetime

Extract date parts
daily['year'] = daily['date'].dt.year
daily['month'] = daily['date'].dt.month
daily['day_of_week'] = daily['date'].dt.dayofweek # 0=Monday, 6=Sunday
daily['is_weekend'] = (daily['date'].dt.dayofweek >= 5).astype(int)

7-day moving average
daily['bookings_ma7'] = daily['bookings'].rolling(window=7).mean()

Day-over-day change
daily['bookings_change'] = daily['bookings'].diff()

Percent change
daily['bookings_pct_change'] = daily['bookings'].pct_change() * 100
⚠️ GOTCHA: .rolling(7) creates first 6 values as NaN. Use min_periods=1 to calculate with available data.
⚠️ GOTCHA: .diff() shifts values down, so first row is NaN. .pct_change() does the same.

Part 2: SQL Essentials
Window Functions: ROW_NUMBER, RANK
-- Real example: Top 3 bookings per city
-- bookings table: booking_id, city, revenue, booking_date

-- ROW_NUMBER (unique rank, even with ties)
WITH ranked AS (
 SELECT
 booking_id,
 city,
 revenue,
 ROW_NUMBER() OVER (PARTITION BY city ORDER BY revenue DESC) AS rn
 FROM bookings
)
SELECT * FROM ranked WHERE rn <= 3;

-- RANK (ties get same rank, gaps after)
-- If two bookings tie for #1, next is #3
SELECT
 booking_id,
 city,
 revenue,
 RANK() OVER (PARTITION BY city ORDER BY revenue DESC) AS rank
FROM bookings;

-- DENSE_RANK (no gaps)
-- If two bookings tie for #1, next is #2
SELECT
 booking_id,
 city,
 revenue,
 DENSE_RANK() OVER (PARTITION BY city ORDER BY revenue DESC) AS dense_rank
FROM bookings;
⚠️ GOTCHA: Use ROW_NUMBER for "top N" to avoid getting extra rows when ties exist.
⚠️ GOTCHA: PARTITION BY resets ranking for each group. Omit it to rank across entire table.
Window Functions: LAG and LEAD
-- Real example: Month-over-month revenue growth
WITH monthly_revenue AS (
 SELECT
 DATE_FORMAT(booking_date, '%Y-%m-01') AS month,
 SUM(revenue) AS total_revenue
 FROM bookings
 WHERE booking_date >= '2024-01-01'
 GROUP BY DATE_FORMAT(booking_date, '%Y-%m-01')
)
SELECT
 month,
 total_revenue,
 LAG(total_revenue, 1) OVER (ORDER BY month) AS prev_month_revenue,
 total_revenue - LAG(total_revenue, 1) OVER (ORDER BY month) AS revenue_change,
 ROUND(
 100.0 * (total_revenue - LAG(total_revenue, 1) OVER (ORDER BY month)) /
 NULLIF(LAG(total_revenue, 1) OVER (ORDER BY month), 0),
 2
) AS mom_growth_pct
FROM monthly_revenue
ORDER BY month;

-- LEAD (next row)
SELECT
 booking_date,
 revenue,
 LEAD(revenue, 1) OVER (ORDER BY booking_date) AS next_day_revenue
FROM daily_bookings;
⚠️ GOTCHA: LAG() on first row returns NULL. Use COALESCE or NULLIF to handle division by zero.
⚠️ GOTCHA: ORDER BY in window function determines which row is "previous". Double-check your ORDER BY!
Window Functions: Running Totals & Moving Averages
-- Running total
SELECT
 booking_date,
 revenue,
 SUM(revenue) OVER (ORDER BY booking_date) AS running_total
FROM bookings;

-- Running total by city
SELECT
 booking_date,
 city,
 revenue,
 SUM(revenue) OVER (PARTITION BY city ORDER BY booking_date) AS running_total_by_city
FROM bookings;

-- 7-day moving average
SELECT
 booking_date,
 revenue,
 AVG(revenue) OVER (
 ORDER BY booking_date
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) AS moving_avg_7d
FROM daily_bookings;

-- 30-day moving average by city
SELECT
 booking_date,
 city,
 revenue,
 AVG(revenue) OVER (
 PARTITION BY city
 ORDER BY booking_date
 ROWS BETWEEN 29 PRECEDING AND CURRENT ROW
) AS moving_avg_30d
FROM daily_bookings;
⚠️ GOTCHA: ROWS BETWEEN 6 PRECEDING = 7 rows total (6 before + current). For 7-day MA, use 6 PRECEDING.
⚠️ GOTCHA: If you have gaps in dates, moving average will use actual rows, not calendar days.
CTEs (Common Table Expressions)
-- Real example: Customer retention (Q1 to Q2 2024)
WITH q1_customers AS (
 -- Customers who made first booking in Q1
 SELECT DISTINCT customer_id
 FROM bookings
 WHERE booking_date >= '2024-01-01'
 AND booking_date < '2024-04-01'
),
q2_activity AS (
 -- Customers who booked in Q2
 SELECT DISTINCT customer_id
 FROM bookings
 WHERE booking_date >= '2024-04-01'
 AND booking_date < '2024-07-01'
)
SELECT
 COUNT(DISTINCT q1.customer_id) AS q1_cohort_size,
 COUNT(DISTINCT q2.customer_id) AS returned_in_q2,
 ROUND(100.0 * COUNT(DISTINCT q2.customer_id) / COUNT(DISTINCT q1.customer_id), 2) AS retention_pct
FROM q1_customers q1
LEFT JOIN q2_activity q2 ON q1.customer_id = q2.customer_id;
⚠️ GOTCHA: CTEs are temporary—only exist for the query. Use for readability, not performance.
⚠️ GOTCHA: Later CTEs can reference earlier ones, but not vice versa. Order matters!

Part 3: CharterUP SQL Scenarios
Scenario 1: Fleet Utilization
Question: What % of days was each vehicle booked in December 2024?
-- Approach: Count distinct days booked per vehicle / total days in month
WITH vehicle_bookings AS (
 SELECT
 v.vehicle_id,
 v.vehicle_type,
 COUNT(DISTINCT DATE(b.booking_date)) AS days_booked
 FROM vehicles v
 LEFT JOIN bookings b
 ON v.vehicle_id = b.vehicle_id
 AND b.booking_date >= '2024-12-01'
 AND b.booking_date < '2025-01-01'
 GROUP BY v.vehicle_id, v.vehicle_type
)
SELECT
 vehicle_id,
 vehicle_type,
 days_booked,
 31 AS total_days_in_dec,
 ROUND(100.0 * days_booked / 31, 2) AS utilization_pct
FROM vehicle_bookings
ORDER BY utilization_pct DESC;
⚠️ GOTCHA: Use COUNT(DISTINCT DATE(booking_date)) if a vehicle can have multiple bookings same day.
Scenario 2: Route Profitability
Question: Which routes are most profitable after fuel and driver costs?
SELECT
 b.origin_city,
 b.destination_city,
 CONCAT(b.origin_city, ' → ', b.destination_city) AS route,
 COUNT(*) AS num_trips,
 SUM(b.revenue) AS total_revenue,
 SUM(b.miles * v.fuel_cost_per_mile) AS total_fuel_cost,
 SUM(b.duration_hours * d.hourly_rate) AS total_driver_cost,
 SUM(b.revenue) - SUM(b.miles * v.fuel_cost_per_mile) - SUM(b.duration_hours * d.hourly_rate) AS net_profit,
 ROUND(
 100.0 * (SUM(b.revenue) - SUM(b.miles * v.fuel_cost_per_mile) - SUM(b.duration_hours * d.hourly_rate)) /
 NULLIF(SUM(b.revenue), 0),
 2
) AS profit_margin_pct
FROM bookings b
JOIN vehicles v ON b.vehicle_id = v.vehicle_id
JOIN drivers d ON b.driver_id = d.driver_id
WHERE b.booking_date >= CURDATE() - INTERVAL 1 YEAR
GROUP BY b.origin_city, b.destination_city
HAVING num_trips >= 10 -- Filter low-volume routes
ORDER BY net_profit DESC
LIMIT 10;
⚠️ GOTCHA: Use NULLIF(revenue, 0) to avoid division by zero if a route has $0 revenue.
⚠️ GOTCHA: Filter in HAVING (after grouping) vs WHERE (before grouping). num_trips requires HAVING.

Part 4: Tableau Essentials
Connecting to Data
1. Connect to data source (Excel, CSV, SQL database, Google Sheets)
2. Data → New Data Source → Select type (e.g., Microsoft SQL Server, MySQL, Excel)
3. For databases: Enter server, database name, credentials
4. Select tables to import (single or multiple tables)
5. Use Relationships (Tableau will auto-detect) or Joins (manual)
⚠️ GOTCHA: Use Extract for large datasets (faster) or Live Connection for real-time data. Extracts create .hyper files.
⚠️ GOTCHA: Relationships are flexible (like LEFT JOINS) but can create Cartesian products. Use Joins for precise control.
Building Visualizations
Dimensions vs Measures:
Dimensions: Categorical fields (City, Customer Name, Date). Blue pills. Used for grouping.
Measures: Numeric fields (Revenue, Count, Profit). Green pills. Aggregated by default.
Real Example: Revenue by City
Drag "City" to Columns (dimension → groups by city)
Drag "Revenue" to Rows (measure → sums revenue)
Tableau creates bar chart automatically
Right-click axis → Sort → Descending by Revenue
Drag "City" to Color for colored bars
⚠️ GOTCHA: Measures auto-aggregate (SUM by default). Change aggregation: Click pill → Measure → Avg/Min/Max/Count.
Chart Types: When to Use What
	Chart Type
	Use For
	Quick Tip

	Bar Chart
	Compare categories (revenue by city)
	Use horizontal bars for long labels

	Line Chart
	Show trends over time (daily bookings)
	Connect to Columns (date), Rows (measure)

	Scatter Plot
	Show correlation (revenue vs miles)
	Drag to Columns and Rows, use Trend Line

	Map
	Geographic data (bookings by state)
	Drag geographic field (City, State) to view

	Heatmap
	Show patterns (bookings by day/hour)
	Drag dimensions to Rows/Cols, measure to Color

	Treemap
	Hierarchical proportions (revenue by category → product)
	Drag to Rows, then drag to Color/Size

Filters & Parameters
Filters:
Drag field to Filters shelf
Choose filter type: Wildcard (text search), Condition (revenue > 1000), Top N
Show filter to user: Right-click filter → Show Filter
Types: Single Value, Multiple Values, Slider, Dropdown
Parameters (User Inputs):
Right-click data pane → Create Parameter
Set data type (String, Integer, Float, Date)
Define allowable values (All, List, Range)
Use in calculated fields: IF [City] = [City Parameter] THEN [Revenue] END
Show Parameter: Right-click → Show Parameter
⚠️ GOTCHA: Filters apply to data. Parameters are inputs that you reference in calculations. Use filters for static, parameters for dynamic.
Calculated Fields
Real Examples:
Profit: [Revenue] - [Cost] (Simple math)
Profit Margin %: ([Revenue] - [Cost]) / [Revenue] * 100 (Format as Percentage)
Is Weekend: DATEPART("weekday", [Booking Date]) >= 6 (Boolean (True/False))
Revenue Tier: IF [Revenue] > 1000 THEN "High" ELSEIF [Revenue] > 500 THEN "Medium" ELSE "Low" END (IF/ELSE)
Month Name: DATENAME("month", [Booking Date]) (Extract month name)
⚠️ GOTCHA: Field names are case-sensitive and use brackets: [Revenue] not Revenue.
⚠️ GOTCHA: Aggregations in calcs: SUM([Revenue]) / SUM([Cost]) ≠ AVG([Revenue] / [Cost]). Row-level vs aggregated.
Table Calculations (Quick Calcs)
Quick Table Calculations:
Right-click measure pill → Quick Table Calculation
Running Total: Cumulative sum (e.g., running total revenue)
Percent of Total: Each value as % of total
Difference: Current value - previous value
Percent Difference: (Current - Previous) / Previous * 100
Moving Average: Average of current + N previous values
Real Example: Month-over-Month Growth
Create line chart: Month to Columns, Revenue to Rows
Right-click SUM(Revenue) → Quick Table Calculation → Percent Difference
Click again → Edit Table Calculation → Compute Using: Month
Format as Percentage
⚠️ GOTCHA: "Compute Using" determines direction of calculation. Table (across) vs Pane (down) vs specific dimension.
Dashboards: Putting It All Together
Create individual sheets (charts) first
Dashboard → New Dashboard
Drag sheets onto dashboard canvas
Add Filters: Click sheet → Use as Filter (allows click-to-filter)
Add Actions: Dashboard → Actions → Filter/Highlight/URL actions
Resize: Use Tiled (grid) or Floating (overlap) layout
Add text, images, web pages for context
Real Example: CharterUP Dashboard
Sheet 1: KPI Summary (Big Number: Total Revenue, Total Bookings, Fleet Utilization %)
Sheet 2: Revenue Trend (Line chart: Date vs Revenue)
Sheet 3: Revenue by City (Bar chart, sorted desc)
Sheet 4: Top 10 Routes (Table: Route, Revenue, Profit Margin)
Dashboard: Combine all sheets, add date filter, add city filter
⚠️ GOTCHA: Dashboard filters apply to all sheets UNLESS you exclude a sheet. Click filter → Apply to Worksheets → Selected.
⚠️ GOTCHA: Performance: Limit dashboards to 5-7 sheets. Too many slows it down. Use extracts, not live connections.
Level of Detail (LOD) Expressions
Advanced: Control aggregation level
FIXED: { FIXED [City] : SUM([Revenue]) } → Ignore all other dimensions, aggregate by City only
INCLUDE: { INCLUDE [Product] : AVG([Revenue]) } → Include Product even if not in view
EXCLUDE: { EXCLUDE [Month] : SUM([Revenue]) } → Aggregate without considering Month
Real Example: Calculate % of Total Revenue per City
// Total company revenue (ignore dimensions in view)
{ FIXED : SUM([Revenue]) }

// % of total
SUM([Revenue]) / { FIXED : SUM([Revenue]) }
⚠️ GOTCHA: LOD is advanced. For interviews, know it exists but don't stress if you can't write it from scratch.
Tableau Interview Tips
Know when to use dimensions vs measures
Explain aggregations clearly (SUM, AVG, COUNT)
Show how you'd use filters vs parameters
Describe a dashboard you built (your Fulton County dashboards!)
Mention performance tips (extracts, limit data, efficient calcs)
Talk about design: clean layout, clear labels, color for meaning not decoration

Part 5: Statistical Modeling
Linear Regression (Predict Revenue)
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, r2_score
import pandas as pd

Real example: Predict booking revenue
data = {
 'miles': [50, 100, 150, 200, 80, 120, 180],
 'passengers': [20, 30, 40, 50, 25, 35, 45],
 'is_weekend': [0, 1, 0, 1, 0, 1, 0],
 'revenue': [500, 1000, 1500, 2000, 800, 1200, 1800]
}
df = pd.DataFrame(data)

Features and target
X = df[['miles', 'passengers', 'is_weekend']]
y = df['revenue']

Split (80/20)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Train
model = LinearRegression()
model.fit(X_train, y_train)

Predict
y_pred = model.predict(X_test)

Evaluate
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'MAE: ${mae:.2f}') # Average error in dollars
print(f'R²: {r2:.3f}') # % variance explained

Interpret coefficients
for feature, coef in zip(X.columns, model.coef_):
 print(f'{feature}: ${coef:.2f} per unit')
⚠️ GOTCHA: R² can be negative on test set if model is terrible. Always check test R², not just train!
⚠️ GOTCHA: MAE and RMSE are in same units as target (dollars). Lower is better.
Logistic Regression (Predict Cancellation)
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score

Real example: Predict if booking will be cancelled
data = {
 'lead_time_days': [1, 7, 14, 2, 21, 3, 10], # Days before trip
 'price': [500, 1000, 1500, 600, 2000, 700, 1200],
 'is_weekend': [0, 1, 0, 1, 0, 1, 0],
 'cancelled': [1, 0, 0, 1, 0, 1, 0] # 1=cancelled, 0=completed
}
df = pd.DataFrame(data)

X = df[['lead_time_days', 'price', 'is_weekend']]
y = df['cancelled']

Split with stratify to maintain class balance
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)

Train
model = LogisticRegression()
model.fit(X_train, y_train)

Predict
y_pred = model.predict(X_test)
y_pred_proba = model.predict_proba(X_test)[:, 1] # Probability of cancellation

Evaluate
print(f'Accuracy: {accuracy_score(y_test, y_pred):.3f}')
print(f'Precision: {precision_score(y_test, y_pred):.3f}') # Of predicted cancellations, how many were actual?
print(f'Recall: {recall_score(y_test, y_pred):.3f}') # Of actual cancellations, how many did we catch?
print(f'ROC AUC: {roc_auc_score(y_test, y_pred_proba):.3f}')
⚠️ GOTCHA: Use stratify=y in train_test_split for imbalanced classes. Otherwise test set might have zero cancellations!
⚠️ GOTCHA: Accuracy is misleading if classes are imbalanced (95% complete, 5% cancelled). Focus on precision/recall.
Time Series Forecasting
from prophet import Prophet
import pandas as pd

Real example: Forecast daily bookings
daily = pd.DataFrame({
 'ds': pd.date_range('2024-01-01', periods=90), # Prophet needs 'ds' column
 'y': [45, 50, 48, 52, 60, 55, 58, 62, 65, 70] * 9 # Prophet needs 'y' column
})

Train model
model = Prophet(yearly_seasonality=False, weekly_seasonality=True)
model.fit(daily)

Forecast next 30 days
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)

Get predictions
print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(30))

Plot
model.plot(forecast)
model.plot_components(forecast) # Shows trend, weekly seasonality
⚠️ GOTCHA: Prophet requires columns named exactly "ds" (date) and "y" (value). Rename before fitting!
⚠️ GOTCHA: For time series, NEVER shuffle data. Use time-based split (e.g., first 80% train, last 20% test).

Part 6: Model Evaluation
Regression Metrics
MAE (Mean Absolute Error): Average error in same units as target. Example: MAE = $50 means avg off by $50
RMSE (Root Mean Squared Error): Penalizes large errors more than MAE. Example: RMSE > MAE when big errors exist
R² (R-squared): % of variance explained. 0-1 scale.. Example: R²=0.7 means model explains 70% of variance
Classification Metrics
Accuracy: Correct predictions / Total. Misleading if classes imbalanced
Precision: TP / (TP + FP). Of predicted positives, how many are correct?
Recall: TP / (TP + FN). Of actual positives, how many did we catch?
F1 Score: 2 * (Precision * Recall) / (Precision + Recall). Balance precision and recall
ROC AUC: Area under ROC curve. 0.5=random, 1.0=perfect. Measures discrimination
⚠️ GOTCHA: High accuracy doesn't mean good model! If 95% complete and you always predict "complete", accuracy=95% but recall for cancellations=0%.
Overfitting vs Underfitting
Overfitting: High train accuracy, low test accuracy. Model memorized training data.
Fix: Simpler model, more data, regularization, cross-validation
Underfitting: Low train AND test accuracy. Model too simple.
Fix: More complex model, add features, reduce regularization
⚠️ GOTCHA: ALWAYS check test set performance. Train accuracy alone is meaningless!

Quick Reference: When to Use Which Model
	Model
	Use When
	Example

	Linear Regression
	Predict continuous value
	Revenue, duration, demand

	Logistic Regression
	Binary classification
	Cancel yes/no, churn yes/no

	Random Forest
	Non-linear, feature importance
	Predict case duration (your Fulton project!)

	XGBoost
	Best performance, handles missing data
	Kaggle competitions, production models

	Prophet
	Time series with seasonality/holidays
	Forecast daily bookings

	ARIMA
	Time series trend + seasonality
	Classic forecasting method

