
Thru	My	Lens	-	Technical
Documentation

Overview
Website:	https://rosy.shitchell.com/photography/	Type:	Personal
Photography	Portfolio	Created:	December	2024

Technology	Stack

Frontend

Technology Version Purpose

HTML5 - Page	structure	and
semantic	markup

CSS3 -
Styling,
animations,
responsive	design

Vanilla	JavaScript ES6+
Interactivity,	API
calls,	DOM
manipulation

Google	Fonts -
Typography
(Cormorant
Garamond,
Montserrat)

No	frameworks	used	-	Pure	HTML,	CSS,	and	JavaScript	for
simplicity	and	performance.

Backend

Technology Version Purpose
Node.js 18+ Server	runtime	for	API
HTTP	module Built-in Web	server	(no	Express	needed)
FS	module Built-in File	system	operations
Crypto	module Built-in Generating	unique	filenames

Infrastructure

Technology Version Purpose

Nginx 1.24+ Web	server,	reverse	proxy,	SSL
termination

Docker 24+ Container	runtime	for	API
Docker
Compose 2+ Container	orchestration

Let’s	Encrypt - SSL/TLS	certificates
Ubuntu	Linux 24.04 Server	operating	system

Data	Storage

Technology Purpose
File	System Photo	storage	(JPEG,	PNG,	WebP,	GIF)
JSON Metadata	storage	(titles,	sort	order,	upload	dates)

No	database	used	-	Simple	JSON	file	for	metadata	keeps	things
lightweight.

Development	Tools

Code	Editing

Claude	Code	-	AI-assisted	coding	and	terminal	operations

Version	Control

Git	-	Source	control
GitHub	-	Repository	hosting,	deployment	triggers

Testing

Browser	DevTools	-	Chrome/Firefox	developer	tools	for
debugging
curl	-	API	endpoint	testing
Docker	logs	-	Server-side	debugging

Deployment

GitHub	Actions	-	Automated	deployment	on	push	to	main
rsync	-	File	synchronization	to	server

File	Structure
/var/www/rosy.shitchell.com/srv/
├──	web/
│			└──	photography/
│							├──	index.html														#	Main	gallery	(all	frontend	
code)
│							├──	upload.html													#	Upload	interface
│							└──	uploads/
│											├──	landscapes/									#	Nature	photos
│											│			└──	*.jpg,	*.png
│											├──	historic/											#	City	photos
│											│			└──	*.jpg,	*.png
│											└──	metadata.json							#	Photo	titles,	order,	dates
│
└──	upload-api/
				├──	server.js																			#	Node.js	API	server
				├──	Dockerfile																		#	Container	build	instructions
				└──	docker-compose.yml										#	Container	configuration

Frontend	Architecture

Single-File	Approach

All	frontend	code	lives	in	index.html:	-	CSS	in	<style>	tags	(~600
lines)	-	HTML	structure	(~150	lines)	-	JavaScript	in	<script>	tags
(~500	lines)

Why	single	file?	-	Simple	to	edit	and	deploy	-	No	build	process
needed	-	Easy	to	understand	entire	application	-	Appropriate	for	small
project	scope

CSS	Features	Used

Feature Usage
CSS	Variables Color	palette	(:root	{	--bg,	--ink,	etc.	})
Flexbox Navigation,	modal	buttons,	menu	items
CSS	Grid Photo	gallery	layout
clamp() Responsive	typography
backdrop-filter Frosted	glass	effect	on	navigation
Transitions Hover	effects,	animations
Media	Queries Mobile	responsive	breakpoints
aspect-ratio Square	photo	frames

JavaScript	Features	Used

Feature Usage
async/await API	calls
Fetch	API HTTP	requests	to	backend
FormData File	uploads
DOM	manipulation Dynamic	gallery	rendering
Event	listeners Click,	drag,	keyboard	handlers
Drag	and	Drop	API Photo	reordering
FileReader	API Image	preview	before	upload
classList Toggle	CSS	classes
Template	literals HTML	string	generation
Arrow	functions Callbacks	and	event	handlers
Destructuring API	response	handling

No	External	Libraries

The	frontend	uses	zero	external	JavaScript	libraries:	-	No	jQuery	-	No
React/Vue/Angular	-	No	Lodash/Underscore	-	No	Moment.js

Everything	is	built	with	native	browser	APIs.

Backend	Architecture

API	Server	Design

Simple	Node.js	HTTP	server	without	frameworks:

const	http	=	require('http');
const	fs	=	require('fs');
const	path	=	require('path');
const	crypto	=	require('crypto');

Why	no	Express.js?	-	Only	6	endpoints,	no	complex	routing	needed	-
Fewer	dependencies	=	fewer	security	updates	-	Educational	value	in
understanding	raw	HTTP	-	Smaller	container	image

API	Endpoints

Method Endpoint Request	Body Response

GET /photos -
{	landscapes:	
[...],	
historic:	
[...]	}

POST /upload
FormData	(photo,
title,	category,
password)

{	success,	
filename,	path	
}

POST /edit
JSON	(filename,
category,	title,
password)

{	success	}

POST /replace
FormData	(photo,
filename,	category,
password)

{	success,	
newFilename,	
path	}

POST /delete JSON	(filename,
category,	password) {	success	}

POST /reorder JSON	(category,
order[],	password) {	success	}

File	Upload	Handling

Custom	multipart	form	parser	(no	multer	or	busboy):

Security	measures:	-	File	extension	whitelist	(.jpg,	.jpeg,	.png,	.gif,	
.webp)	-	Max	file	size	limit	(20MB)	-	Filename	sanitization	(remove
special	characters)	-	Unique	filename	generation	(timestamp	+
random	hash)	-	Password	authentication	on	all	write	operations

Metadata	Storage

metadata.json	structure:

const	server	=	http.createServer((req,	res)	=>	{
				//	Route	handling	with	if/else
				if	(req.method	===	'GET'	&&	req.url	===	'/photos')	{
								//	List	photos
				}
				if	(req.method	===	'POST'	&&	req.url	===	'/upload')	{
								//	Handle	upload
				}
				//	etc.
});

function	parseMultipart(buffer,	boundary)	{
				//	Parse	boundary-separated	parts
				//	Extract	filename,	content-type,	data
				//	Return	array	of	parts
}

{
		"photo_1234567890_abc123.jpg":	{
				"title":	"Sunset	at	the	Beach",
				"category":	"landscapes",
				"sortOrder":	0,
				"uploaded":	"2024-12-08T12:00:00.000Z"
		},

Infrastructure	Setup

Nginx	Configuration

server	{
				server_name	rosy.shitchell.com;
				root	/var/www/rosy.shitchell.com/srv/web;

				#	Static	files
				location	/photography/	{
								try_files	$uri	$uri/	=404;
				}

				#	API	proxy
				location	/upload-api/	{
								proxy_pass	http://127.0.0.1:8083/;
								proxy_set_header	Host	$host;
								proxy_set_header	X-Real-IP	$remote_addr;
								client_max_body_size	25M;
				}

				#	SSL	(managed	by	Certbot)
				listen	443	ssl;
				ssl_certificate	
/etc/letsencrypt/live/rosy.shitchell.com/fullchain.pem;
				ssl_certificate_key	
/etc/letsencrypt/live/rosy.shitchell.com/privkey.pem;
}

Docker	Configuration

Dockerfile:

docker-compose.yml:

		"photo_0987654321_def456.jpg":	{
				"title":	"City	Lights",
				"category":	"historic",
				"sortOrder":	1,
				"uploaded":	"2024-12-08T13:00:00.000Z"
		}
}

FROM	node:18-alpine
WORKDIR	/app
COPY	server.js	.
CMD	["node",	"server.js"]

services:
		upload-api:
				build:	.
				container_name:	rosy-upload
				restart:	unless-stopped
				ports:
						-	"127.0.0.1:8083:3000"
				volumes:
						-	/var/www/.../uploads:/uploads
						-	/var/www/.../server.js:/app/server.js:ro
				environment:
						-	UPLOAD_PASSWORD=<secret>

Key	decisions:	-	127.0.0.1:8083	-	Only	accessible	locally	(Nginx
proxies	external	requests)	-	Volume	mount	for	server.js	-	Code
changes	without	rebuilding	container	-	Volume	mount	for	uploads	-
Photos	persist	outside	container	-	restart:	unless-stopped	-	Auto-
restart	on	crash	or	server	reboot

Security	Measures

Authentication

Password	stored	in	environment	variable	(not	in	code)
Required	for	all	write	operations	(upload,	edit,	delete,	replace,
reorder)
Sent	with	each	request	(no	session	tokens)

File	Security

Whitelist	of	allowed	extensions
Filenames	sanitized	to	alphanumeric	+	underscore
Original	filenames	never	used	directly
Files	stored	outside	web	root	with	controlled	access

Network	Security

HTTPS	only	(SSL/TLS	via	Let’s	Encrypt)
API	only	accessible	through	Nginx	proxy
Docker	container	isolation
CORS	restricted	to	https://rosy.shitchell.com

Input	Validation

File	size	limits	enforced
Category	whitelist	(only	landscapes	or	historic)
JSON	parsing	in	try/catch	blocks

Performance	Optimizations

Frontend

loading="lazy"	on	images	(browser-native	lazy	loading)
CSS	transitions	(GPU-accelerated)
No	external	JavaScript	libraries	to	download
Single	HTTP	request	for	page	(inline	CSS/JS)

Backend

Synchronous	file	operations	(appropriate	for	low	traffic)
JSON	metadata	cached	in	memory	(read	on	each	request,	but	file
is	small)
Static	files	served	directly	by	Nginx	(not	through	Node.js)

Images

object-fit:	cover	for	consistent	display	without	distortion
Original	resolution	preserved	(no	server-side	resizing)
Browser	caching	via	Nginx	headers

Browser	Compatibility

Supported	Browsers

Chrome	80+
Firefox	75+
Safari	13+
Edge	80+

Features	That	Require	Modern	Browsers

CSS	Grid
CSS	clamp()
CSS	aspect-ratio
backdrop-filter	(frosted	glass	effect)
Drag	and	Drop	API
Fetch	API
async/await

Graceful	Degradation

Navigation	still	works	without	JavaScript	(anchor	links)
Photos	display	even	if	JS	fails	(server-rendered	paths)
Blur	effect	degrades	to	solid	background	on	older	browsers

Deployment	Process

Manual	Deployment

1.	 Edit	files	in	/var/www/rosy.shitchell.com/srv/web/photography/
2.	 Changes	are	live	immediately	(static	files)
3.	 For	API	changes:	docker	restart	rosy-upload

Git-Based	Deployment

1.	 Edit	files	locally	or	in	~/code/git/rosy-web/
2.	 Commit	and	push	to	main	branch
3.	 GitHub	Actions	runs	rsync	to	server
4.	 API	container	restarts	if	server.js	changed

Rollback

Git	revert	for	code	changes
Photos	not	in	Git	(manual	backup	needed)
metadata.json	can	be	restored	from	backup

Monitoring	&	Debugging

Logs

#	Nginx	access	logs
tail	-f	/var/log/nginx/access.log

#	Nginx	error	logs
tail	-f	/var/log/nginx/error.log

#	API	container	logs

Health	Checks

Common	Issues

Problem Solution
Photos	not	loading Check	file	permissions	in	uploads	folder
API	returns	404 Restart	container:	docker	restart	rosy-upload
Upload	fails Check	Nginx	client_max_body_size	setting
CORS	errors Verify	origin	in	server.js	matches	domain

Local	Development

Prerequisites

Node.js	18+
Docker	(optional,	for	containerized	testing)

Running	Locally

Testing	API

Summary

Layer Technology Why	Chosen
Frontend HTML/CSS/JS Simple,	no	build	step,	easy	to	learn
Backend Node.js JavaScript	everywhere,	lightweight
Server Nginx Fast,	reliable,	good	SSL	support
Container Docker Isolation,	reproducibility
Storage Files	+	JSON Simple,	no	database	overhead

docker	logs	-f	rosy-upload

#	Check	if	API	is	running
curl	https://rosy.shitchell.com/upload-api/photos

#	Check	container	status
docker	ps	|	grep	rosy-upload

#	Start	API	server
cd	/var/www/rosy.shitchell.com/srv/upload-api
node	server.js

#	Serve	frontend	(any	static	server)
cd	/var/www/rosy.shitchell.com/srv/web/photography
python3	-m	http.server	8000

#	List	photos
curl	http://localhost:3000/photos

#	Upload	(requires	form	data)
curl	-X	POST	http://localhost:3000/upload	\
		-F	"photo=@test.jpg"	\
		-F	"title=Test"	\
		-F	"category=landscapes"	\
		-F	"password=your-password"

SSL Let’s	Encrypt Free,	automated	renewal
Hosting Ubuntu	VPS Full	control,	cost-effective

Total	external	dependencies:	2	(Google	Fonts	for	typography)

Document	created:	December	2024	Website:
https://rosy.shitchell.com/photography/

