Thru My Lens - Technical
Documentation

Overview

Website: https://rosy.shitchell.com/photography/ Type: Personal
Photography Portfolio Created: December 2024

Technology Stack
Frontend
Technology Version Purpose
HTMLS5 i Page structure and
semantic markup
Styling,
CSS3 - animations,
responsive design
Interactivity, API
Vanilla JavaScript ES6+ calls, DOM
manipulation
Typography
(Cormorant
Google Fonts - Garamond,
Montserrat)

No frameworks used - Pure HTML, CSS, and JavaScript for
simplicity and performance.

Backend
Technology Version Purpose
Node.js 18+ Server runtime for API

HTTP module Built-in Web server (no Express needed)
FS module Built-in File system operations
Crypto module Built-in Generating unique filenames

Infrastructure

Technology Version Purpose

Nginx 1244 Web Server, reverse proxy, SSL
termination

Docker 24+ Container runtime for API
Docker 2+ Container orchestration
Compose
Let’s Encrypt - SSL/TLS certificates
Ubuntu Linux 24.04 Server operating system

Data Storage

Technology Purpose
File System Photo storage (JPEG, PNG, WebP, GIF)
JSON Metadata storage (titles, sort order, upload dates)

No database used - Simple JSON file for metadata keeps things
lightweight.

Development Tools

Code Editing

* Claude Code - Al-assisted coding and terminal operations

Version Control

¢ Git - Source control
¢ GitHub - Repository hosting, deployment triggers

Testing

¢ Browser DevTools - Chrome/Firefox developer tools for
debugging

¢ curl - API endpoint testing

¢ Docker logs - Server-side debugging

Deployment

¢ GitHub Actions - Automated deployment on push to main
¢ rsync - File synchronization to server

File Structure

/var/www/rosy.shitchell.com/srv/

— web/

| — photography/

| F— index.html # Main gallery (all frontend
code)

| F— upload.html # Upload interface

| L— uploads/

| — landscapes/ # Nature photos

| | Y *.jpg, *.png

| — historic/ # City photos

| | Y~ *.ipg, *.png

| L— metadata.json # Photo titles, order, dates
|

L— upload-api/
— server.js # Node.js API server
— Dockerfile Container build instructions
L— docker-compose.yml Container configuration

#

Frontend Architecture

Single-File Approach

All frontend code lives in index.html: - CSS in <style> tags (~600
lines) - HTML structure (~150 lines) - JavaScript in <script> tags
(~500 lines)

Why single file? - Simple to edit and deploy - No build process

needed - Easy to understand entire application - Appropriate for small
project scope

CSS Features Used

Feature Usage
CSS Variables Color palette (:root { --bg, --ink, etc. })
Flexbox Navigation, modal buttons, menu items
CSS Grid Photo gallery layout
clamp() Responsive typography

backdrop-filter Frosted glass effect on navigation
Transitions Hover effects, animations

Media Queries Mobile responsive breakpoints
aspect-ratio Square photo frames

JavaScript Features Used

Feature Usage
async/await API calls
Fetch API HTTP requests to backend
FormData File uploads
DOM manipulation Dynamic gallery rendering
Event listeners Click, drag, keyboard handlers
Drag and Drop API Photo reordering
FileReader API Image preview before upload
classList Toggle CSS classes
Template literals HTML string generation
Arrow functions Callbacks and event handlers
Destructuring API response handling

No External Libraries

The frontend uses zero external JavaScript libraries: - No jQuery - No
React/Vue/Angular - No Lodash/Underscore - No Moment.js

Everything is built with native browser APIs.

Backend Architecture

API Server Design

Simple Node.js HTTP server without frameworks:

const http = require('http');
const fs = require('fs');

const path = require('path');
const crypto = require('crypto');

const server = http.createServer((req, res) => {
// Route handling with if/else
if (req.method === 'GET' && req.url === '/photos') {
// List photos
}
if (req.method === 'POST' && req.url === '/upload') {
// Handle upload
}
// etc.
1)

Why no Express.js? - Only 6 endpoints, no complex routing needed -

Fewer dependencies = fewer security updates - Educational value in
understanding raw HTTP - Smaller container image

API Endpoints

Method Endpoint Request Body Response
{ landscapes:
[...1,
GET /photos) historic:
[...1}
FormData (photo, { success,
POST /upload title, category, filename, path
password) }
JSON (filename,
POST /edit category, title, { success }
password)
FormData (photo, { success,
POST /replace filename, category, newFilename,
password) path }
JSON (filename,
POST /delete category, password) { success }
POST /reorder JSON (category, { success }

order[], password)

File Upload Handling

Custom multipart form parser (no multer or busboy):

function parseMultipart(buffer, boundary) {
// Parse boundary-separated parts
// Extract filename, content-type, data
// Return array of parts

}

Security measures: - File extension whitelist (.jpg, .jpeg, .png, .gif,
.webp) - Max file size limit (20MB) - Filename sanitization (remove
special characters) - Unique filename generation (timestamp +
random hash) - Password authentication on all write operations

Metadata Storage

metadata. json structure:

{

"photo 1234567890 abcl123.jpg": {
"title": "Sunset at the Beach",
"category": "landscapes",

"sortOrder": 0,
"uploaded": "2024-12-08T12:00:00.000Z"

"photo 0987654321 def456.jpg": {
"title": "City Lights",
"category": "historic",
"sortOrder": 1,
"uploaded": "2024-12-08T13:00:00.000Z"
}

Infrastructure Setup

Nginx Configuration

server {
server_name rosy.shitchell.com;
root /var/www/rosy.shitchell.com/srv/web;

Static files
location /photography/ {

try files $uri $uri/ =404;
}

API proxy

location /upload-api/ {
proxy pass http://127.0.0.1:8083/;
proxy set header Host $host;
proxy set header X-Real-IP $remote addr;
client max_body size 25M;

}

SSL (managed by Certbot)

listen 443 ssl;

ssl certificate
/etc/letsencrypt/live/rosy.shitchell.com/fullchain.pem;

ssl certificate key
/etc/letsencrypt/live/rosy.shitchell.com/privkey.pem;
}

Docker Configuration

Dockerfile:

FROM node:18-alpine
WORKDIR /app

COPY server.js .

CMD ["node", "server.js"]

docker-compose.yml:

services:
upload-api:
build:
container name: rosy-upload
restart: unless-stopped
ports:
- "127.0.0.1:8083:3000"
volumes:
- /var/www/.../uploads:/uploads
- /var/www/.../server.js:/app/server.js:ro
environment:
- UPLOAD PASSWORD=<secret>

Key decisions: - 127.0.0.1:8083 - Only accessible locally (Nginx
proxies external requests) - Volume mount for server.js - Code
changes without rebuilding container - Volume mount for uploads -
Photos persist outside container - restart: unless-stopped - Auto-
restart on crash or server reboot

Security Measures

Authentication

e Password stored in environment variable (not in code)

e Required for all write operations (upload, edit, delete, replace,
reorder)

e Sent with each request (no session tokens)

File Security

Whitelist of allowed extensions

Filenames sanitized to alphanumeric + underscore
Original filenames never used directly

Files stored outside web root with controlled access

Network Security

HTTPS only (SSL/TLS via Let’s Encrypt)

API only accessible through Nginx proxy
Docker container isolation

CORS restricted to https://rosy.shitchell.com

Input Validation

¢ File size limits enforced
e Category whitelist (only landscapes or historic)
¢ JSON parsing in try/catch blocks

Performance Optimizations

Frontend

loading="1lazy" on images (browser-native lazy loading)
CSS transitions (GPU-accelerated)

No external JavaScript libraries to download

Single HTTP request for page (inline CSS/JS)

Backend

e Synchronous file operations (appropriate for low traffic)

¢ JSON metadata cached in memory (read on each request, but file
is small)

e Static files served directly by Nginx (not through Node.js)

Images

e object-fit: cover for consistent display without distortion
e Original resolution preserved (no server-side resizing)
e Browser caching via Nginx headers

Browser Compatibility

Supported Browsers

Chrome 80+
Firefox 75+
Safari 13+
Edge 80+

Features That Require Modern Browsers

CSS Grid

CSS clamp()

CSS aspect-ratio

backdrop-filter (frosted glass effect)
Drag and Drop API

Fetch API

async/await

Graceful Degradation

e Navigation still works without JavaScript (anchor links)
e Photos display even if JS fails (server-rendered paths)
e Blur effect degrades to solid background on older browsers

Deployment Process

Manual Deployment

1. Edit files in /var/www/rosy.shitchell.com/srv/web/photography/
2. Changes are live immediately (static files)
3. For API changes: docker restart rosy-upload

Git-Based Deployment

Edit files locally or in ~/code/git/rosy-web/
Commit and push to main branch

GitHub Actions runs rsync to server

. API container restarts if server.js changed

B WN -

Rollback

¢ Git revert for code changes
e Photos not in Git (manual backup needed)
e metadata.json can be restored from backup

Monitoring & Debugging

Logs
tail -f /var/log/nginx/access.log

tail -f /var/log/nginx/error.log

docker logs -f rosy-upload

Health Checks

Check if API is running
curl https://rosy.shitchell.com/upload-api/photos

Check container status
docker ps | grep rosy-upload

Common Issues

Problem Solution

Photos not loading Check file permissions in uploads folder

API returns 404 Restart container: docker restart rosy-upload
Upload fails Check Nginx client max_body size setting
CORS errors Verify origin in server.js matches domain

Local Development

Prerequisites

e Node.js 18+
e Docker (optional, for containerized testing)

Running Locally

Start API server
cd /var/www/rosy.shitchell.com/srv/upload-api
node server.js

Serve frontend (any static server)
cd /var/www/rosy.shitchell.com/srv/web/photography
python3 -m http.server 8000

Testing API

List photos
curl http://localhost:3000/photos

Upload (requires form data)
curl -X POST http://localhost:3000/upload \
-F "photo=@test.jpg" \
-F "title=Test" \
-F "category=landscapes" \
-F "password=your-password"

Summary

Layer Technology Why Chosen
Frontend HTML/CSS/JS Simple, no build step, easy to learn
Backend Node.js JavaScript everywhere, lightweight
Server Nginx Fast, reliable, good SSL support
Container Docker Isolation, reproducibility

Storage Files + JSON Simple, no database overhead

SSL Let’s Encrypt Free, automated renewal
Hosting Ubuntu VPS Full control, cost-effective

Total external dependencies: 2 (Google Fonts for typography)

Document created: December 2024 Website:
https://rosy.shitchell. com/photography/

